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Abstract: Polymer Electrolyte Membrane (PEM) fuel cells are a popular green source of electrical energy and is often 

used in applications like electric vehicles due to its environmentally friendly operation. This type of fuel cell has a low 

operating temperature, light weight, and negligible emission of greenhouse gases. However, the PEM fuel cell is a 

complex multivariable system with a large number of input and output factors, and most of the input factors affect 

output factors directly or indirectly. As a result, it is conventionally quite difficult to determine which input factor has 

a major effect on a particular output factor. Statistical methods are very popular for finding the individual and 

interaction effects of input factors on output factors. In this paper, for the first time, a simple and realistic MATLAB 

SIMULINK model for a PEM fuel cell is presented to conduct various experimental tests. The developed MATLAB 

SIMULINK model and statistical design of experiments, Response Surface Methodology (RSM), are used to develop 

metamodels (mathematical models of the simulation model) for the PEM fuel cell to find the individual and interaction 

effects of various input factors on output factors. The developed metamodels can be used to find the region for 

optimum operation of the presented fuel cell. The metamodels are validated by conducting four different statistical 

tests. The optimum point of operation is presented by calculating stationary points from the metamodels. 
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Introduction 

     Fuel cells are very popular as a green energy 
source of electrical energy, as the hazardous green house 

gases emitted during energy conversion process in all 

types of fuel cells are negligible and hence energy 

conversion is considered to be environment friendly.  

Fuel cells are generally classified according to electrolyte 

used and operating temperatures. The PEM fuel cell is a 

low temperature fuel cell mostly demanded in electric 

mobility applications due to its simple structure, quick 

start, high power density, low operating temperature and 

negligible environmental effects [1][2]. For modeling and 

analysis of complex systems, the statistical design of 

experiment response surface methodology, which is an 

simple and user friendly mathematical tool, can be used 

to express output factors in terms of input factors with 

optimized response. The objective of the response surface 

methodology is to understand the topology of response 

surface and find the region where the optimal response 

occurs [3] [4].  

     As the demand on PEM fuels cell increases, 

numbers of mathematical models have been reported in 

literature to represent its static and dynamic behavior. In 

this paper, a simple but accurate SIMULINK model of PEM 

fuel cell is developed for performance analysis. The 

presented simulation model is a generalized model and 

thus applicable to PEM fuel cells of any rating. Using test 

data obtained from the SIMULINK model and statistical 
experiments, first and second order Metamodels are 

developed for PEM fuel cell which can be used to find 

individual or interaction effects of input factors on output 

factors. The validation of Metamodels is also presented. 
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Development of the PEM Fuel Cell 
SIMULINK Model 

     To analyze the operating performance of PEM fuel 

cells, numbers of mathematical models, static as well as 

dynamic, have been reported in literature 

[5][6][7][8][9][10][11][12]. The previous models in 

literature are either very complex or require a huge 

amount of experimental data for modeling and simulation. 

The proposed models in this paper are simple, optimized 

and more realistic without requiring as much 

experimental data compared to the previous models to 

create. The details of the developed Simulink model have 

been presented in the authors’ previous research [13]. 

   The developed MATLAB SIMULINK model of a PEM 

fuel cell is shown in Fig. 1. This simulation model consists 

of several sub-models to establish the relationships 

between various input and output factors. The simulation 

model was previously validated using practical PEM fuel 

cells developed by the author in [13]. The SIMULINK 

model has been validated against practical PEM fuel cells 

under the same environmental conditions. This model 

allows for the analysis of the effects of one or more input 

factors on one or more output factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Main Model of PEM fuel cell 

Development of Metamodels 

     The Metamodel is a mathematical model developed 

using principle of statistical modeling and MATLAB 

SIMULINK model. Many experiments to develop the 

Metamodels were conducted using the simulation models. 

One such experiment involved changing input factors to 

better understand the input/output replationship.  

The development of first order model and 
selection of input factor levels 

     The terminal voltage of a PEM fuel cell is influenced 

by various polarizations and decreases as the current 

drawn from the fuel cell increases while optimum 

performance of a PEM fuel cell is achievable when it 

operates in the high power density region. [14].  To 

develop Metamodels, the controllable input factors used 

for analysis are fuel cell current (I), mass flow rate of 

hydrogen (H) and cell internal capacitance (C) whereas the 

output factors considered for analysis are cell output 

voltage (V) and cell power density (P). The response 

factors are the functions of input factors and hence they 

are changing with respect to change in any input factor. 

     The first step in the proposed statistical response 

surface methodology is to select ranges of input factors. 
Here the selected input factors are coded into variable x1, 

x2 and x3 respectively. Table 1 shows ranges of input 

factors selected for analysis. 

 

Table 1. Selection of input factors 

Input Factor 
Input 

variables 

Highest 

value 

Lowest 

value 

Base 

value 

Fuel cell 

current 

(mA/cm2) 

x1 150 450 300 

Mass flow 

rate of 

Hydrogen 

(SLPM) 

x2 0.1 0.5 0.3 

Cell Internal 

Capacitance 

(F/g) 

x3 50 250 150 

Development and Analysis of First Order 
Model 

     In first order Metamodel, the approximated 

function has linear relation with independent variables. 

This model can effectively be represented as, 

 

yi = β0 + β1xi1+ 21xi2+ …..+ βq xq1 + e             (1) 

 

where, y is response function, x1, x2 … xi as design variables, 

βj’s regression coefficients and e as a statistical error term. 

     The first order Metamodels are very effective to 

represent flat surfaces [15]. To develop this model, a 

single replicate 23=8 experimental test was conducted on 

simulation model and the results of these eight runs are 

shown in Table 2. 
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Table 2. Data for processing first order model 

Input Factors Coded 

Factors 

Responses 

I H C x1 x2 x3 V (V) P(W//cm2) 

150 0.1 50 -1 -1 -1 0.73 0.10 

450 0.1 50 1 -1 -1 0.62 0.27 

150 0.5 50 -1 1 -1 0.75 0.11 

450 0.5 50 1 1 -1 0.64 0.28 

150 0.1 250 -1 -1 1 1.10 0.18 

450 0.1 250 1 -1 1 0.92 0.42 

150 0.5 250 -1 1 1 1.21 0.45 

450 0.5 250 1 1 1 1.16 0.55 

 

     All input factors are coded in the interval -1 to +1.  

The zero (0) indicate middle or the centre of design and 

plus one and minus one (+1 and -1) as a distances from 

the zero in both directions. The first order orthogonal 

system is more efficient as it shows very less variance [15]. 

From table 2, sum of product input factor columns is zero, 

hence system is orthogonal. Here for analysis of data, 

Minitab software is used. The fitted first order 

Metatamodels can be expressed as, 

 

V = 0.8912 – 0.0563x1 + 0.0487x2 + 0.2062x3        (2) 

P = 0.2950 + 0.0850x1 + 0.0525x2 + 0.1050x3        (3) 

 

     The validity of these models are checked with the 

help of following statistical tests, 

• Normality test  

• Regression analysis test 

• Analysis of variance test 

• Lack of fit test 

 

The regression equation expressing V as a function of x1, 

x2, x3 is given by 

 

V = 0.891 - 0.0562 x1 + 0.0487 x2 + 0.206 x3         (4) 

 

Table 3. Regression analysis  

Independe

nt 

Variables 

Coefficient

s 

S.E. 

Coefficient

s 

Valu

e of 

T 

facto

r 

Valu

e of 

P 

facto

r 

Constant 0.89125 0.02253 39.5

5 

0.00

0 

x1 -0.05625 0.02253 -2.50 0.06

7 

x2 0.04875 0.02253 2.16 0.09

7 

x3 0.20625 0.02253 9.15 0.00

1 

 

S = 0.0637377, R2 = 95.9%, R2(adj) = 92.9% 

 

Table 4. Variance Analysis 

Source Deg.Fr Sum.Sq Mn. Sq F Value P 

Value 

Reg. 3 0.3846 0.1282 31.56 0.003 

Res. Er. 4 0.0162 0.0040   

Total 7 0.4008    

The regression equation expressing P as a function of x1, 

x2, x3 is given by 

 

P = 0.295 + 0.0850 x1 + 0.0525 x2 + 0.105 x3         (5) 

 

Table 5. Regression analysis  

Independent 

Variables 

Coefficients S.E. 

Coefficients 

Value 

of T 

factor 

Value 

of P 

factor 

Constant 0.29500 0.02678 11.02 0.000 

x1 0.08500 0.02678 3.17 0.034 

x2 0.05250 0.02678 1.96 0.121 

x3 0.10500 0.02678 3.92 0.017 

 

S = 0.0757463, R2 = 88.0%, R2(adj) = 79.0% 

 

 

Table 6. Variance Analysis 

Source Deg. 

Fr. 

Sum. 

Sq 

Mn. Sq F 

Value 

P 

Value 

Reg. 3 0.1680 0.0560 9.76 0.026 

Res. Er. 4 0.0229 0.0057   

Total 7 0.1910    

 

Here, the normal probability of V and P is used to check 

effectiveness of developed models. From Fig.3 and Fig.4 it 

is observed that the residual plots of both response 

variables follows linear relationship hence normality test 

is said to be satisfied. 

http://www.ausmt.org/
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Fig. 3. Normal probability plot for V 

 

Fig. 4. Normal probability plot for P 

 

     The statistical regression analysis test is a 

hypothesis test which is used to determine relation 

between dependent variable (response) and independent 

variables (input factors). Here the hypothesis used is, 

 

H0 : β1= β2 = β3 = 0   vs 

H1 : βj ? 0   for minimum one j 

 

From statistical regression analysis test for V, at α=0.05  

F0.05,3,4 =6.591<F=31.56.  

From Table 6,  P- value (0.003) <α (0.05).   

Also from regression analysis and variance analysis test for 

P, at α=0.05  

F0.05,3,4 =6.591 < observed F=9.76and P- value (0.026) <α 

(0.05). Therefore, the null hypothesis can be rejected i.e. 

all variables contributes significantly to particular 

response variable. 

     From statistical regression analysis test, the 

calculated coefficient of determination can be used to 

determine how developed model effectively fits the 

experimental data. When values of coefficient of 

determination (R2)nearly approaching 1, it indicate that 

the developed regression equation fits the sample input 

data effectively. For both response variables, the 

calculated coefficient of determination are close to 1, 

hence the developed regression equations fits input data 

effectively. 

     The individual effect on input factors on output 

factors can be shown using main effect plots. More slop in 

a plot indicate  large effect of that input factor on output 

factor [16][17]. The figures 5 and 6 shows main effect plots 

for response variables V and P.  

 

Fig 5. Main effect plot for output voltage 

 

Fig 6. Main effect plot for power density 

 

From Fig. 5 and Fig. 6 it is clear that there is an effect of all 

input factors on output factors. 

     To find which independent variable significantly 

affects the particular dependent variable, a statistical t-

test is used. For test statistic following hypothesis is used, 

 

H0: βx1  = 0             H1: βx1   ? 0 
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H0: βx2  = 0             H1: βx2   ? 0 

H0: βx3  = 0             H1: βx3   ? 0 

 

To check hypothesis, the level of significance used is 5 %. 

For output variable V, 

 

|𝑡𝑥1| =2.50 > t0.05,4 = 1.53 

|𝑡𝑥2| =2.16 > t0.05,4 = 1.53 

|𝑡𝑥3| =9.15 > t0.05,4 = 1.53 

 

As observed  |𝑡0|   critical value  tα, N-q-1 hence null 

hypothesis is  rejected. 

 

For output variable P, 

 

|𝑡𝑥1| =3.17 > t0.05,4 = 1.53 

|𝑡𝑥2| =1.96 > t0.05,4 = 1.53 

|𝑡𝑥3| =3.92 > t0.05,4 = 1.53 

 

As all t-statistic values are found to be more than t critical 

values hence null hypothesis is rejected. 

First Order Center Point Design Analysis 

     To check lack of fit for both response variables V and 

P, here center point design analysis is used. The center 

point design consists of nf number of factorial points and 

nc =3 center point observations of each response 

variables[17][18]. 

To test lack of fit for V,  FL = MSLOF/MSPE = 0.036 

Fα,nd-q-1,N-nd = 19.296 and as FL< Fα,nd-q-1,N-nd,(nd = 8+1,) 

the evidence for lack of fit at α= 0.05 can be rejected. 

Similarly for response variable power density,  FL = 

MSLOF/MSPE = 0.019, Fα,nd-q-1,N-nd = 19.296. As FL< Fα,nd-q-1,N-

nd , the evidence for lack of fit can be rejected. Therefore 

the first order model can effectively be used to represent 

true response surface. 

     Counter plots for response factors V and P are 

shown figure 7 and figure 8 respectively. How a particular 

response variable relates with two input variable at a time 

that can be judged from counter plots. As there are three 

input factors, one factor required to be hold at constant 

level while plotting the other two input factors. Counter 

plots for response variables V and P are shown in figure 7 

and figure 8 respectively. 

 

 

 

 

 

 

 

 

 

 

Fig. 7(a). Counter plot for V vs x1, x2 

 

Fig. 7(b). Counter plot for V vs x2,x3 

 

Fig. 8(a). Counter plot for P vs x1,x2 
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Fig. 8(b). Counter plot for P vs x2, x3 

 

     For flat and tilted response surfaces, the counter 

lines are always parallel. However, from the counter plot 

of response variable V vs variables x1-x2 and from the 

counter plot of response variable P vs variables x2-x3, the 

counter lines are not parallel which indicates that there 

exist curvature in response surface and hence there is a 

need to analyze higher order model. 

Analysis of Higher Order Model Using 
Response Surface 

     Curvature in the response surface of first order 

model indicates that the first order model is insufficient to 

represent response effectively. To fit second order models, 

the central composite design (CCD) is proposed here. The 

CCD consists of one or more axial points, factorial points 

and center points. 

 

Orthogonal Central Composite Design 

     The orthogonal CCD needs one observation at each 

of the nf factorial points and 2q defined axial points and 

also extra nc observations at the center. Selecting proper 

value for significant factor α and nc, the orthogonal CCD 

with minimum observations can be achieved [19][20]. 

Considering α= 1.215 and nc = 1, the 15- run CCD matrix is 

shown in table7. 

 

Table 7. Central composite design matrix 

x1 x2 x3 V P 

-1 -1 -1 0.73 0.10 

1 -1 -1 0.62 0.27 

-1 1 -1 0.75 0.11 

1 1 -1 0.64 0.28 

-1 -1 1 1.10 0.18 

1 -1 1 0.92 0.42 

-1 1 1 1.21 0.45 

1 1 1 1.16 0.55 

0 0 0 0.97 0.28 

1.215 0 0 0.92 0.440 

-1.215 0 0 1.05 0.120 

0 1.215 0 0.96 0.276 

0 -1.215 0 0.4 0.118 

0 0 1.215 1.05 0.310 

0 0 -1.215 0.64 0.190 

 

This design consists of 15 observations and 6 axial points 

with 1 centre point. 

 

Response Surface Regression: V versus x1, x2, x3 

 

Table 8. Evaluated Regression Coefficients for V 

Predictor 
Coeff. 

 

S.E.   

Coeff. 

Value 

of T 

factor 

Value of 

P factor 

Constant 0.8643 0.0911 9.48 0.000 

x1 -0.0674 0.0508 -1.32 0.242 

x2 0.1187 0.0508 2.33 0.067 

x3 0.2383 0.0508 4.68 0.005 

x1*x1 0.1552 0.0979 1.58 0.174 

x2*x2 -0.1497 0.0979 -1.52 0.187 

x3*x3 0.0152 0.0979 0.15 0.882 

x1*x2 0.0239 0.0723 0.33 0.754 

x1*x3 -0.0018 0.0723 -0.02 0.981 

x2*x3 0.0572 0.0723 0.79 0.465 

 

S = 0.138586   PRESS = 0.799359 

R2 = 87.42%  R2(pred) = 0.00%  R2(adj) = 64.78% 

 

V = 0.864 – 0.0674x1 + 0.12x2 + 0.24x3 +0.16x1
2 – 0.15x2

2 + 

0.0152x3
2 + 0.024x1x2 + 0.057x2x3              (6) 

 

Table 9. Variance Analysis for V 

Term 
Deg.  

Fr. 
Sm.S 

Ad. Sm. 

S. 

Ad.Mn.

S 

Value 

of F 

factor 

Value 

of P 

factor 

Reg. 9 0.6673 0.6673 0.0741 3.86 0.075 

Linr. 3 0.5596 0.5596 0.1865 9.71 0.016 

x1 1 0.0337 0.0337 0.0337 1.76 0.242 

x2 1 0.1046 0.1046 0.1046 5.45 0.067 

x3 1 0.4213 0.4213 0.4213 21.9 0.005 

Sq. 3 0.0935 0.0935 0.0311 1.62 0.296 

x1*x1 1 0.0481 0.0481 0.0482 2.51 0.174 

x2*x2 1 0.0448 0.0448 0.0448 2.34 0.187 

x3*x3 1 0.0004 0.0004 0.0004 0.02 0.882 

Intera

ction 
3 0.0141 0.0141 0.0047 0.25 0.862 

x1*x2 1 0.0021 0.0021 0.0000 0.11 0.754 

x1*x3 1 0.0000 0.0000 0.0000 0.00 0.981 
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x2*x3 1 0.0120 0.0120 0.0120 0.63 0.465 

Resid

ual 

Error 

5 0.0960 0.0960 0.0960   

 

Response Surface Regression: P versusx1, x2, x3 

 

 

able 10. Estimated Regression Coefficients for P 

Term Coeff. 

 

S.E.  

Coeff. 

 

Value  

of T  

factor 

Value  

of P 

 factor 

Constant 0.2297 0.0401 5.721 0.002 

x1 0.1185 0.0224 5.292 0.003 

x2 0.0678 0.0224 3.030 0.029 

x3 0.1093 0.0224 4.881 0.005 

x1*x1 0.0668 0.0431 1.549 0.182 

x2*x2 -0.0162 0.0431 -0.376 0.723 

x3*x3 0.0368 0.0431 0.853 0.433 

x1*x2 -0.0258 0.0318 -0.811 0.454 

x1*x3 -0.000 0.0318 -0.000 1.000 

x2*x3 0.0701 0.0318 2.202 0.079 

 

S = 0.0610251  PRESS = 0.171368 

R2 = 93.31%  R2(pred) = 38.47%  R2(adj) = 81.28% 

 

P = 0.23 + 0.12x1 + 0.068x2 + 0.11x3 + 0.067x1
2 – 0.016x2

2 

+ 0.037x3
2 – 0.026 x1x2 – 0.07x2x3                 (7) 

  

Table 11. Variance Analysis for P 

Terms Deg. 

Fr 

Seq 

Sm. 

Sq 

Adj 

 Sm. 

 Sq 

Adj 

Mn. 

Sq 

Value 

 of F 

factor 

Value 

of  

P 

factor 

Reg. 9 0.2598 0.2598 0.0288 7.75 0.018 

Linr. 3 0.2272 0.2272 0.0757 20.34 0.003 

x1 1 0.1042 0.1042 0.1042 28.01 0.003 

x2 1 0.0341 0.0341 0.0341 9.18 0.029 

x3 1 0.0887 0.0887 0.0887 23.83 0.005 

Sq. 3 0.0121 0.0121 0.0040 1.09 0.434 

x1*x1 1 0.0089 0.0089 0.0089 2.40 0.182 

x2*x2 1 0.0005 0.0005 0.0005 0.14 0.723 

x3*x3 1 0.0027 0.0027 0.0027 0.73 0.433 

Inter. 3 0.0205 0.0205 0.0068 1.83 0.258 

x1*x2 1 0.0024 0.0024 0.0024 0.66 0.454 

x1*x3 1 0.0000 0.0000 0.0000 0.00 1.000 

x2*x3 1 0.0180 0.0180 0.0180 4.85 0.079 

Res.Er. 5 0.0186 0.0186 0.0037   

Total 14 0.2785     

From regression analysis and variance analysis tests, the 

final second order Metamodels can be expressed as 

 

V = 0.864 – 0.0674x1 + 0.12x2 + 0.24x3 +0.16x1
2 – 0.15x22 

+ 0.0152x3
2 + 0.024x1x2  + 0.057x2x3 

P = 0.23 + 0.12x1 + 0.068x2 + 0.11x3 + 0.067x1
2 – 0.016x2

2 

+ 0.037x3
2 – 0.026 x1x2 – 0.07x2x3                 (8) 

 

     Counter plots are very useful to find shape of 

response surface and locating optimum response 

approximately. Fig. 9 and Fig.10 represent counter plots 

and response surfaces for response variable V whereas Fig. 

11 and Fig.12 represent counter plots and response 

surfaces for response variable P. From the plot it is clear 

that there is a curvature and this curvature in the response 

plots clearly indicate the model consists of quadratic 

terms. 

Fig. 9. Counter plots for V 

 

Fig. 10(a). Response surface plot for V vs x1,x2. 
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Fig. 10(b). Response surface plot for V vs x1,x3. 

 

Fig. 10(c). Response surface plot for V vs x3,x2. 

 

Fig.11. Counter plots for P 

 

 

 

 

 

Fig. 12(a). Response surface plot for P vs x1,x2. 

 

Fig. 12(b). Response surface plot for P vs x1,x3. 

 

Fig. 12(c). Response surface plot for P vs x3,x2. 
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quadratic surfaces which includes maximum, minimum, 

saddle and ridge. Existence of optimum in quadratic 

surface is the indication of presence of a stationary point.  

The combine existence of input variables at which the 

quadratic surface is either max or min in all directions is 

called as stationary point. If the stationary point is max in 

some direction and min in another direction, then the 

stationary point is considered to be saddle point. To find 

the stationary point, consider the fitted second order 

model for fuel cell voltage 

 

         𝑦𝑣̂  = 𝛽0̂   + x’b + x’Bx              (9) 

 

           
𝑑𝑦𝑣

𝑑𝑥

̂   = b + 2Bx =0                  (10) 

 

            xs =  - ½ B-1 b                    (11) 

 

where, 

‘b’ represents  single column matrix of regression 

coefficients and ‘B’ represents a symmetric matrix of 

quadratic coefficients and half the mutual quadratic 

coefficients. The response factors at the stationary point 

can be calculated from  

 

             𝑦𝑠̂  = 𝛽0̂   + ½ x’s b             (12) 

 

For response variables, V and P, the stationary pointsare 

calculated as 

 

𝑥𝑠 = [
0.2343
−0.7953
−0.6389

]   For V, and 

 

 

𝑥𝑠 = [
−0.9123
−0.1251
−1.3682

]    For P 

 

 

Using equation,  

 

𝑦𝑠̂  = 𝛽0̂   + ½ x’s b                         (13) 

 

The values of the response variables, fuel cell output 

voltage and power density corresponding to  calculated 

stationary points are given by, 

 

V= 0.732 V 

P = 100 mW/cm2 

 

Conclusion 

     Statistical design of experiment, response surface 

methodology is an effect tool to develop Metamodels for 

any dynamic system to analyze effect of one or more input 

factors on one or more output factors. The first and 

second order Metamodels developed for both response 

factors of PEM fuel cell are accurate and validated using 

various statistical tests.  The calculated stationary points 

specify operation region of the PEM fuel cell for optimum 

response. The presented method can be used for 

modeling, optimization and feasibility study of other fuel 

cells and fuel cell systems. 
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