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Abstract: An adaptive state aggregation Q-Learning method, with the capability of multi-agent cooperation, is 

proposed to enhance the efficiency of reinforcement learning (RL) and is applied to box-pushing tasks for humanoid 

robots. First, a decision tree was applied to partition the state space according to temporary differences in 

reinforcement learning, so that a real valued action domain could be represented by a discrete space. Furthermore, 

adaptive state Q-Learning, which is the modification of estimating Q-value by tabular or function approximation, is 

proposed to demonstrate the efficiency of reinforcement learning in simulations of a humanoid robot pushing a box. 

The box moves in the direction in which the robot asserts force. To push the box to the target point, the robot needs 

to learn how to adjust angles, avoid obstacles, and keep balance. Simulation results show the proposed method 

outperforms Q-Learning without using adaptive states. 
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Introduction 

Due to its unsupervised learning structure and 

ability to produce continual learning in a dynamic 

operating environment, reinforcement learning [1] has 

emerged as an important approach to machine learning. 

It allows robots to learn faster in searching for optimal 

strategies, if there is an effective way to cut the state 

space. However, it is hard to define a continual state 

space in reinforcement learning as a discrete state space 

and still get a robot to act as expected. Therefore, how to 

accommodate a continuously receptive field has become 

an important and complicated issue for research on how 

robots can best learn strategies via reinforcement 

learning. 

Applying reinforcement learning in real 

environments requires state partition from the 

continuous information received and filed, because doing 

so significantly affects learning performance [2]. Some 

researchers have used neural networks as function 

approximators to estimate the state values [3][5]. 

Although they can avoid the state discretization 

problems, this approach has an important drawback in 

convergence, which is especially serious given complex 

state value functions. Tile coding uses a linear 

combination to evaluate the state value functions [6][8]. 

Although it can tackle continuous state and real value 

actions and uses less memory than directly partitioning 

the state space, choosing the tiling number and the 

number of tiles in every tiling instance is similar to 

choosing the partition sizes. Cognitive models based on 

adaptive resonance theory (ART) can adaptively partition 

the state space [9]. Such models require a certain 

amount of computational time to evaluate the vigilance 

parameter of all nodes; especially if the number of nodes 

is large. The decision trees can adaptively partition the 

state space into some exclusive subspaces corresponding 

to the leaf nodes [12]. Since robots only activate one 

node at every time step, they cannot easily combine 

actions chosen by activated nodes. They must also 

address issues related to the continuous action space. 
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Many existing reinforcement learning (RL) 

algorithms have been characterized with discrete sets of 

states and actions and can be transferred directly to 

real-world physical systems, general referred to as 

continuous state action spaces. Extensive research has 

recently focused on the development of new algorithms 

that can learn optimal policies to control physical 

systems described as continuous state and action spaces. 

Such approaches transfer these continuous variables to a 

new discrete version of the problem [15][16]. However, 

bad discretization of the state or action space may 

introduce hidden states into the problem, thus making it 

impossible to learn the optimal policy. On the other hand, 

too granular a discretization could moot the ability to 

generalize while increasing training data requirements. 

This is especially true when the task's state is 

multi-dimensional, where the number of discrete states 

can be exponential in the state dimension [17]. 

This paper proposes an adaptive state aggregation 

Q-Learning, such that humanoid robots can efficiently 

learn better strategies to reach their goal either in an 

individual or cooperative task in a dynamic environment. 

Humanoid robots were tasked to push boxes using 

dynamic parameter settings, and this activity was used to 

validate the practicality and effectiveness of the 

proposed learning method. The remainder of this paper 

is organized as follows. The research background is 

introduced briefly in the following section. Section 3 

discusses the reinforcement learning method developed 

for box-pushing humanoid robots. Section 4 

demonstrates the outcomes of box pushing simulations 

using a single and two cooperating robots with the 

proposed reinforcement learning method. Conclusions 

are drawn in the final section. 

Background 

Q-Learning is a reinforcement learning technique, 

allowing machines to learn from actions without requiring 

a model of the environment. Reinforcement learning uses 

an action-value function to performs a given action a in a 

given state s. As shown in Fig. 1, the Q-Learning model 

can be described as the interaction of an agent, which can 

perform actions and alter the environment from one state 

to another, and its environment. The agent's memory 

contains a pair of state–actions and a Q value, computed 

from the action value function. The agent uses an 

evaluation function to select an action under state s, 

which has the best Q value, using the learning function to 

update the Q value during the learning procedure, and 

the reinforcement function to evaluate its action in the 

current state. 

 

 

Figure 1. The Q-Learning model. 

 

Before learning starts, Q is set to an arbitrary value. 

An agent performs an action a based on the state-action 

pairs stored in its memory under a specific state s. Then 

the state in the environment changes to s' and the agent 

obtains a reward for its action. The learning function 

computes a new Q value immediately after the agent 

performing an action. During training, the Q-Learning 

model uses these recorded Q values and online rewards 

to update the Q values in the agent's memory. After 

appropriate training, the Q value will converge to an 

optimal value. The Q value with state s and action a are 

updated as follows: 

 

   ),(),(max),(),( asQ'a'sQrasQasQ    
(1) 

 

where α, which is > 0 and ≦ 1, is a real number used 

as the learning rate. γ, which is > 0 and ≦ 1, is the 

temporal discount factor. r is the reward after performing 

action a under state s and can be evaluated according to 

different applications. s' denotes the state after 

performing action a under state s. max(Q(s', a')) denotes 

the maximum future Q value. 
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Reinforcement Learning for Box-Pushing 
Humanoid Robots 

An adaptive state aggregation Q-Learning method 

is proposed to enhance the efficiency of reinforcement 

learning (RL) as applied to box-pushing tasks for 

humanoid robots. First, the decision tree was applied to 

partition the continuous state space according to 

temporary differences of reinforcement learning, so that 

a real value domain can be represented by a discrete 

space. Adaptive state Q-Learning was also applied. Figure 

2 shows the proposed reinforcement learning for 

box-pushing humanoid robots. The upper part depicts 

the procedure of building decision trees based on the 

adaptive state aggregation (ASA-DT) approach, followed 

by the Q-Learning (ASA-QL). 

Figure 2 shows the ASA-DT block 2, in which 

unVisitedQueue is a first in first out linear queue and was 

used to store these leaves for possible splitting. Unvisited 

represents the current leaf, which was tested for splitting. 

Enqueue() and dequeue() are functions respectively used 

to add a leaf for testing split into and remove a leaf from 

unVisitedQueue. The method of testing if a leaf needs to 

be split, choosing the splitting dimensions, and updating 

the state error are discussed in Section 3.1. When no leaf 

needs to be tested for splitting, the decision tree is 

regarded as being stable in the current environment. 

Humanoid robot box pushing with adaptive state 

aggregation is described in Section 3.2. 

Decision Tree for Adaptive State Aggregation (ASA-DT) 

Discretization requires a continuous state space, 

and may categorize similar states into a single state. 

Reversely, a continuous action space can be interpolated 

from a set of some key or representative discrete actions. 

The proposed adaptive state aggregation method 

produces a decision tree that can adaptively segment the 

state space without expert experience. In the beginning, 

the decision tree only has a root node to represent the 

entire state space, including all information on sensory 

inputs and their estimation state errors. After several 

training iterations, the root node or some leaf nodes can 

be split into two child nodes analogous to two subspaces. 

When the training process is performed repeatedly, the 

tree grows and the state space is divided into subtler 

subspaces. Each internal node of the tree corresponds to 

a subspace in the state space. It can make a decision in 

the internal node and its decision represents a split in 

the subspace by means of a hyper plane perpendicular to 

the chosen split dimension. Each leaf node of the tree 

corresponds to an exclusive subspace of the state space 

and can be regarded as representing a state of the 

proposed adaptive state aggregation Q-Learning. 

 

 

Figure 2. Reinforcement learning for box-pushing for humanoid robots. 

 

In a training iteration, the agent receives a sensory 

input vector ut, and finds the most fitting leaf node, 

denoted as s, to cover ut. Then, an agent selects an 

action according to the corresponding action values in 

the leaf node. After taking the action, the agent receives 

the next sensory input vector ut+1 and a reinforcement 

signal or reward rt+1. The same action is repeated until 

the agent enters another leaf node s' if under semi-MDP 

[18]. The sojourning period, in which the agent keeps 

repeatedly performs the action found in the same node, 

is called an epoch and denoted as τ. The action value 

of each sensory input vector in the epoch at time t+k, 

where 0 ≦ k ≦ τ-1, can be expressed as follows 

[18]: 
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where γ , which is > 0 and ≦  1, is the temporal 

discount factor. The r is the reward and can be evaluated 

according to different applications. The 𝑉̅(𝑠′), defined as 
 asQs

sleafa
,'max '

' , is the estimated optimal state value in 

leaf node s'. The estimated action value of the leaf node 

s' is updated using the following formula: 
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A state error, (ut+k, errt+k), is defined as the pairing 

of a sensory input vector ut+k and its estimation error, 

where    asQuQerr tsaktkt
t

,,    is derived from Eqs. 

(2) and (3). Before updating the estimated state-action 
value of leaf node s, all estimation errors of these 
sensory input vectors and their corresponding state 
errors are recorded into a list of leaf nodes. After 
updating the estimated state-action value, the leaf node 
decides if a split is needed or not according to the 
distribution of sensory inputs and the magnitudes of 
estimation errors of the leaf node. If the number of 
records, pairs of (ut+k, errt+k) in leaf node s, is smaller than 
a predefined threshold, Lth, it implies that the estimated 
state-action values may not be convergent to a certain 
degree. Leaf splitting is only considered when the 
number of records about state errors is larger than Lth. 
When the number of records for state errors, Nerr, is 

larger than Lth, the mean μerr and variance 2
err  of the 

estimation errors recorded in the leaf node is used to 
decide whether the leaf node should split or not. If the 
magnitude of the mean |μerr| is large based on the size 
of state space, it means the learning process is still under 
progress and the leaf node cannot be split, otherwise the 

variance 2
err

 
is used to determine the accuracy of the 

current estimation. When |μerr| is close to zero, a small 
variance implies most errors are also small, thus the 
action values have been estimated accurately and the 
leaf node does not need to split. On the other hand, a 
large variance implies errors so divergent that a split may 
be essential for estimation improvement. In other words, 
if the mean of the estimation error is small, but its 
variance is large after the state-action values are trained 
and updated several times, it means that the leaf node 
cannot represent the subspace well and should be split 
into two child nodes [17]. The procedure of determining 
whether or not to split a leaf node is shown in Figure 3. 
Conditions for whether a leaf node s should be split are 
summarized as following: 
Condition 1: The number of records for state errors, Nerr, 

in leaf node s is larger than a predefined threshold 

Lth 

Condition 2: The mean of estimation errors, |μerr|, in leaf 

node s is smaller than a predefined threshold μth, 

which is no less than 0 

Condition 3: The variance of estimation errors, 2
err , in 

leaf node s is larger than a predefined threshold 

2
th

 
 

 

 

Figure 3. Determining whether leaf node s needs to split or not. 

 

The weighted T statistic is used to select the split 

dimension [17]. The recorded state errors in a leaf node 

are divided into two groups; one has positive errors and 

the other has negative errors, and are respectively called 

gp and gn. In each group, elements of sensory input 

vectors in the same dimension are regarded as a set of 

statistic samples. The input vector is written as 

 2
dgdgdgX ,,, ,~  , where dg,  and 2

dg,  are 

respectively the mean and the variance of dimension d of 

group g. If 





 2

dgdgdg
ppp

X
,,, ,~   and  2

dgdgdg
nnn

X
,,, ,~   

have similar means and variances, it means the 

dimension i in the state variable has less influence on the 

estimation error. The T statistic is used to test the 

similarity of 





 2

dgdgdg
ppp

X
,,, ,~   and  2

dgdgdg
nnn

X
,,, ,~  . 

The t value of the T statistic is calculated by Eq. (4). 
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where 
p

gn and 
n

gn  are respectively the number of 

elements in group gp and gn. A higher t value implies less 

similarity between groups gp and gn. The dimension with 

the highest t value is chosen as the split dimension. If all 

the state error records belong to one group only, the 

dimension with the highest variance is chosen as the split 

dimension. To avoid long training times, these two new 

leaf nodes inherit the state value from their parent node. 

The procedure for finding split dimensions is shown in 

Figure 4. 
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Figure 4. Finding split dimensions in a leaf node. 

 

Adaptive Sate Aggregation Q-Learning (ASA-QL) for 

Box-Pushing Humanoid Robots 

To push a box in an enclosed area, a humanoid 

robot requires seven representative actions: Turn Left, 

Turn Right, Stand Up, Push Up, Push Down, Push Left, 

and Push Right. The continuous state space is composed 

of the robots' coordinates, the box, obstacles, and the 

target area. A scenario example of humanoid robots 

pushing boxes is shown in Figure 5. The black box in front 

of the robot is the target box to be pushed, the narrow 

black box represents an obstacle, and the blue square 

denotes the goal. 

 

 

Figure 5. Humanoid robot box-pushing scenario. 

 

Initially, the root node of the decision tree 

corresponds to the entire state space, which is 

represented by the coordinates of the robots and box to 

be pushed. After performing adaptive state aggregation 

reinforcement learning, internal nodes of the tree keep 

splitting until no remaining nodes need to be split. At the 

end of the training, an adaptive state aggregation 

decision tree is built, where each leaf node of the 

adaptive state aggregation decision tree corresponds to 

an exclusive subspace of the state space and can be 

regarded representing a state of Q-Learning. 

Since the range of each state differs, the sojourn 

time, called an epoch, of each robot in each state is also 

different. When a robot enters a state, it is at a decision 

point and selects an action at the beginning of an epoch. 

It then maintains the action and observes the sensory 

inputs from the other observation points until the end of 

the epoch. In an epoch, the robot transited from one 

observation point to another many times, but all the 

observed sensory input vectors belong to the same 

representative state, akin to a leaf node in a decision tree. 

Therefore, the transition time of every epoch could be 

different in different environments. 

For different environments, the robot continuously 

receives environmental information, including the 

position of the box, the goal, and the obstacles; 

responses to an action, and rewards or punishments 

obtained–depending on its surrounding environment. 

The robot controls the direction in which the box moves 

by applying force on the box's pushing point, thus the 

robot needs to learn how to adjust angles, avoid 

obstacles, keep its balance, and push the box to the goal. 

In other words, robots not only learn how to push the 

box to their goal, but also to maintain a consistent 

posture when pushing the box. For the robots to 

maintain gestures steadily while pushing the box, it must 

be able to stand up and learn how to adjust its angle of 

view to avoid surrounding walls after a fall. The robot 

must also learn other collision avoidance actions, such as 

avoiding collisions with static or moving obstacles. The 

robot learning procedure continues until the robot has 

pushed the box to the goal. 

In addition, the ASA-QL can extend to an n-agent 

Markov decision process; that is, robots in a group can 

perform the ASA-QL simultaneously by extending the 

dimensions of the state space consisting of its own state 

space and the actions taken by its partners. Each robot 

has an associated reward function, described by a set of 

rules for all robots to use in the task. 

Each robot's selected actions, next states and 

rewards depend on the joint actions of other robots. 

Therefore, the robot attempts to maximize its expected 

sum of discounted rewards. In practical terms, we 

assume that each robot does not know the reward 

functions and actions, but can only observe their 

immediate rewards. The evaluation of cooperative 

rewards relies on the Nash equilibrium, which requires 

each robot’s policy be the best response to the others' 

policy. Although robots do not know other robots’ 

reward functions, they can observe other robots’ actions 

and subsequent rewards such that each robot performs 

an updated Q value whenever it receives a cooperative 
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reward when making a transition from s to s' after taking 

action a. The expected value in state s for robot i can be 

evaluated using the TD method as follows: 
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(5) 

where  10,  is the learning rate. The extended 

version is also applied to a task in which two robots learn 
to cooperatively push a box to a target area. 

Simulation and Discussion 

To evaluate the performance and practicality of 
reinforcement learning for box-pushing humanoid robots, 
simulations were conducted on a 3D mobile robot 
simulator (Webot 5.2.0). The Webot simulator can set 
environmental parameters (e.g., gravity and friction 
coefficient parameters) to make the proposed adaptive 
state aggregation Q-Learning method simulate a more 
realistic environment. It also can simulate different kinds 
of robots, e.g., wheeled, legged, and flying robots. These 
features allow users to design scenarios to reflect their 
actual applications. It also supports a range of 
programming languages, including C, C++, and JAVA. 
Therefore, once the training is finished, this well-trained 
box-pushing data can be applied to real world 
applications. 

Figure 6 shows the simulation system, including a 
supervisor, robots, a box, and the environment in which 
the box and robots were located. Once the environment 
is set, the supervisor transmits the target box and an 
action to the robot. Depending on the robot’s 
performance of the action, it is either rewarded or 
punished and sent it back to the supervisor for further 
learning. 

 

 

Figure 6. Simulation system. 

 
The simulated environment was a field measuring 

2 m * 2 m, while the goal was a 0.27 m * 0.27 m square, 
the box size was a cube measuring 0.15 m * 0.15 m * 0.3 
m, and the obstacle measured 0.25 m * 0.25 m * 0.4. 

With each step, the robot moves 0.074 m. Each robot 
was equipped with three distance sensors (front, left, 
and right) to detect obstacles. The surveillance system 
comprises a wide-angle camera mounted on top of the 
robot to determine location coordinates, and a wireless 
antenna/receiver to maintain communications with the 
virtual supervisor and the other robots. As shown in Fig. 
7, the humanoid robot consisted of 17 motors – head, 
left/right should, left/right arm, left/right hand, left/right 
hip, left/right leg1, left/right leg2, left/right ankle, and 
left/right foot. Each robot had seven predefined actions: 
turn left, turn right, stand up, push up, push down, push 
left, and push right. 

 

  

(a) Simulation l robot (b) Real world robot 

Figure 7. Robot prototypes. 

 
The simulated field was split into a 16*16 grid map. 

States were represented by robot_x, robot_y, box_x, and 
box_y, so the number of possible initial states was 164. 
The reward was set by the following rules: 
• If the box hits the wall or an obstacle, deduct 100 

points. 
• If the robot pushed the box to the goal, award 100 

points. 
• If the Euclidean distance between the robot and the 

box exceeds as given threshold, deduct 30 points. 
• For other statuses, deduct 1 point. 

Four cases were simulated, as shown in Figure 8. 
The first three figures show a single robot pushing a box 
to the goal, with different initial positions for the robot 
with or without obstacles. The last image shows two 
robots cooperatively pushing a box to the goal with 
obstacles based on the method proposed in Section 3B. 
A single robot should push the box to the goal by itself. 
Two robots should cooperate to push the box to the goal, 
with Q values simultaneously updated using Eq. (5), but 
learning takes place individually. Each case has ten 
different initial positions for the robots and the box. The 
learning rate α was set to 0.8 and the discount rate γ was 
set to 0.9. 

Figure 9 and Figure 10 show a single robot pushing 
a box positioned in front of the robot, to the goal located 
to the robot’s left hand side, with and without obstacles. 
As shown in Fig. 9, after 100 training iterations, the robot 
took 23 steps to reach the goal without an obstacle. 
Figure 10(b) shows that the robot could choose to go to 
the left or the right of the obstacle, but selected the 

supervisor

Goal

Obstacle

Box
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optimal (right) route, as, shown in Figure 10(c), taking 21 
steps to reach the goal after 100 training iterations. In Fig. 
11, two robots were positioned at initiation and tasked 
with jointly pushing the box to the goal. Both robots 
learned continuously and simultaneously but individually. 
Figure 11 shows the simulation of two robots pushing a 
box with an obstacle. 

 

  

(a) A single robot pushing a box 
to the goal without obstacles. 
The box was in front of the 
robot, the goal was on the 
left hand side of the robot 

(b) A single robot pushing a box 
to the goal without obstacles. 
The box was on the upper 
right side of the robot, and 
the goal was on the right side 
of the robot 

  

(c) A single robot pushing a box 
to the goal with an obstacle 

(d) Two robots pushing a box 
cooperatively 

Figure 8. Four simulation cases. 

 

  

(a) Initial positions (b) After 8 steps 

  

(c) After 20 steps (d) After 23 steps, it reached the 
goal 

Figure 9. A single robot pushing a box without obstacles. 

 

Finally, the proposed method was compared with 
Q-Learning without using adaptive states to show 
learning efficiency. Figure 12 compares the steps needed 
by the proposed method and conventional Q-Learning 
for a single robot to successfully push a box to the 
specified goal. Each tic of the horizontal axis represents 
ten trials (learning), the vertical axis, in an exponential 
presentation, shows the average number of steps for 

every 10 trials that the robot took to push the box to the 
goal. The purple/diamond line denotes the outcomes of 
conventional Q-Learning, which uniformly partitions the 
continuous state space into a set of regions and uses a 
table to record the experiences. The blue/X line indicates 
the results reached by the proposed method. The robot 
using the proposed method took fewer steps than those 
using conventional Q-Learning and the proposed method 
nearly converged after 150 trials. 

 

  

(a) Initial positions (b) Colliding with the obstacle 

  

(c) Avoiding the obstacle (d) After 21 steps, it reached the 
goal 

Figure 10. A single robot pushing a box with an obstacle. 

 

  

(a) Colliding with the obstacle (b) Avoiding the obstacle 

Figure 11. Two robots pushing a box with an obstacle. 

 
 

 

Figure 12. Performance comparison of Q-Learning with and without 

adaptive state aggregation. 

 
Furthermore, Figure 13 shows the training data for 

the two robots cooperating to push a box. Each robot 
was trained individually. One dimension of the state 
space was expanded to accommodate actions the 

http://www.ausmt.org/


 ORIGINAL ARTICLE  Adaptive Reinforcement Learning in Box-Pushing Robots 

www.ausmt.org  48          auSMT Vol. 8 No. 1 (2018) 

Copyright ©  2018 International Journal of Automation and Smart Technology 

partner might have taken. The Q values acquired in 
individual learning are "swept" along the new dimension 
to decrease the elapsed time in exploration. More than 
500 steps are needed for the cooperating robots to reach 
the goal before the 100th trial (learning). During the 
learning trial, the average number of steps decreased to 
about 200 steps. After the 450th trial, the robots seem to 
have found an optimal solution and took about 10 steps 
to push the box to the goal. 

 

 

Figure 13. ASA-QL learning procedure for multiple robots jointly 

pushing a box. 

Conclusions 

An adaptive state aggregation Q-Learning (ASA-QL) 

is proposed for humanoid robots pushing a box. An 

adaptive data-based aggregation scheme to adaptively 

discretize a continuous state space was developed. The 

sate space is separated into regions of various sizes 

depending on the occurrences of states interacting with 

the environment. Since learning performance improved 

over time, learning results might not be correct in early 

episodes. Incorrect estimations of action values resulted 

in some redundant splits in tree growth. The proposed 

algorithm not only reduced redundant splits resulting 

from incorrect learning, but also pruned similar sibling 

nodes after each episode. It could clearly reduce the 

tremendous number of leaf nodes. To learn to 

accomplish a task, a growing decision tree as a way of 

building state space was first performed based on the 

proposed state partition method so that humanoid 

robots can learn more rapidly. Simulations had single or 

multiple robots learning to push a box with or without an 

obstacles. Comparing the number of steps needed to 

finish the box pushing task without and with ASA-QL 

showed the proposed ASA-QL outperformed the model 

without adaptive state aggregation. 

Multi-agent systems differ from single-agent systems 

in that several agents exist in the environment modeling 

each other's goals and actions. From an individual 

agent’s perspective, multi-agent systems vary from 

single-agent systems most significantly because the 

environment’s dynamics can be affected by other agents. 

In addition to system uncertainty, other agents may 

intentionally affect the environment. In the case of 

multiple agents learning simultaneously, one particular 

agent is learning the value of actions in a non-stationary 

environment. Thus, the convergence of the 

aforementioned Q-Learning algorithm is not guaranteed 

in a multi-agent setting. Given certain assumptions about 

the way in which actions are selected at each state over 

time, Q-Learning converges to the optimal value function. 

The simplest way used here was just to add the partner's 

actions to extend the state space such that the learning 

agents can pretend that the environment is stationary. 

Unfortunately, this may work only in the cases shown in 

the simulations, and there is no guarantee for the 

successful completion of more complicated tasks or given 

more peers in a group.  
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