

www.ausmt.org 41 auSMT Vol. 8 No. 1 (2018)

Copyright © 2018 International Journal of Automation and Smart Technology

ORIGINAL ARTICLE

Adaptive Reinforcement Learning in

Box-Pushing Robots

Kao-Shing Hwang1, 2 and Jin-Ling Lin3, *
1Department of Electrical Engineering, National Sun Yat-sen University, Taiwan
2Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Taiwan
3Department of Information Management, Shih Hsin University, Taiwan

(Received 8 August 2017; Accepted 19 September 2017; Published online 1 March 2018)

*Corresponding author: jllin@mail.shu.edu.tw

DOI: 10.5875/ausmt.v8i1.1551

Abstract: An adaptive state aggregation Q-Learning method, with the capability of multi-agent cooperation, is

proposed to enhance the efficiency of reinforcement learning (RL) and is applied to box-pushing tasks for humanoid

robots. First, a decision tree was applied to partition the state space according to temporary differences in

reinforcement learning, so that a real valued action domain could be represented by a discrete space. Furthermore,

adaptive state Q-Learning, which is the modification of estimating Q-value by tabular or function approximation, is

proposed to demonstrate the efficiency of reinforcement learning in simulations of a humanoid robot pushing a box.

The box moves in the direction in which the robot asserts force. To push the box to the target point, the robot needs

to learn how to adjust angles, avoid obstacles, and keep balance. Simulation results show the proposed method

outperforms Q-Learning without using adaptive states.

Keywords: Adaptive state partition; Q-Learning; Reinforcement Learning; Humanoid robots; Cooperative box pushing

Introduction

Due to its unsupervised learning structure and

ability to produce continual learning in a dynamic

operating environment, reinforcement learning [1] has

emerged as an important approach to machine learning.

It allows robots to learn faster in searching for optimal

strategies, if there is an effective way to cut the state

space. However, it is hard to define a continual state

space in reinforcement learning as a discrete state space

and still get a robot to act as expected. Therefore, how to

accommodate a continuously receptive field has become

an important and complicated issue for research on how

robots can best learn strategies via reinforcement

learning.

Applying reinforcement learning in real

environments requires state partition from the

continuous information received and filed, because doing

so significantly affects learning performance [2]. Some

researchers have used neural networks as function

approximators to estimate the state values [3][5].

Although they can avoid the state discretization

problems, this approach has an important drawback in

convergence, which is especially serious given complex

state value functions. Tile coding uses a linear

combination to evaluate the state value functions [6][8].

Although it can tackle continuous state and real value

actions and uses less memory than directly partitioning

the state space, choosing the tiling number and the

number of tiles in every tiling instance is similar to

choosing the partition sizes. Cognitive models based on

adaptive resonance theory (ART) can adaptively partition

the state space [9]. Such models require a certain

amount of computational time to evaluate the vigilance

parameter of all nodes; especially if the number of nodes

is large. The decision trees can adaptively partition the

state space into some exclusive subspaces corresponding

to the leaf nodes [12]. Since robots only activate one

node at every time step, they cannot easily combine

actions chosen by activated nodes. They must also

address issues related to the continuous action space.

http://www.ausmt.org/
mailto:jllin@mail.shu.edu.tw
https://doi.org/2010.5875/ausmt.v7i4.1326

 ORIGINAL ARTICLE Adaptive Reinforcement Learning in Box-Pushing Robots

www.ausmt.org 42 auSMT Vol. 8 No. 1 (2018)

Copyright © 2018 International Journal of Automation and Smart Technology

Many existing reinforcement learning (RL)

algorithms have been characterized with discrete sets of

states and actions and can be transferred directly to

real-world physical systems, general referred to as

continuous state action spaces. Extensive research has

recently focused on the development of new algorithms

that can learn optimal policies to control physical

systems described as continuous state and action spaces.

Such approaches transfer these continuous variables to a

new discrete version of the problem [15][16]. However,

bad discretization of the state or action space may

introduce hidden states into the problem, thus making it

impossible to learn the optimal policy. On the other hand,

too granular a discretization could moot the ability to

generalize while increasing training data requirements.

This is especially true when the task's state is

multi-dimensional, where the number of discrete states

can be exponential in the state dimension [17].

This paper proposes an adaptive state aggregation

Q-Learning, such that humanoid robots can efficiently

learn better strategies to reach their goal either in an

individual or cooperative task in a dynamic environment.

Humanoid robots were tasked to push boxes using

dynamic parameter settings, and this activity was used to

validate the practicality and effectiveness of the

proposed learning method. The remainder of this paper

is organized as follows. The research background is

introduced briefly in the following section. Section 3

discusses the reinforcement learning method developed

for box-pushing humanoid robots. Section 4

demonstrates the outcomes of box pushing simulations

using a single and two cooperating robots with the

proposed reinforcement learning method. Conclusions

are drawn in the final section.

Background

Q-Learning is a reinforcement learning technique,

allowing machines to learn from actions without requiring

a model of the environment. Reinforcement learning uses

an action-value function to performs a given action a in a

given state s. As shown in Fig. 1, the Q-Learning model

can be described as the interaction of an agent, which can

perform actions and alter the environment from one state

to another, and its environment. The agent's memory

contains a pair of state–actions and a Q value, computed

from the action value function. The agent uses an

evaluation function to select an action under state s,

which has the best Q value, using the learning function to

update the Q value during the learning procedure, and

the reinforcement function to evaluate its action in the

current state.

Figure 1. The Q-Learning model.

Before learning starts, Q is set to an arbitrary value.

An agent performs an action a based on the state-action

pairs stored in its memory under a specific state s. Then

the state in the environment changes to s' and the agent

obtains a reward for its action. The learning function

computes a new Q value immediately after the agent

performing an action. During training, the Q-Learning

model uses these recorded Q values and online rewards

to update the Q values in the agent's memory. After

appropriate training, the Q value will converge to an

optimal value. The Q value with state s and action a are

updated as follows:

   ),(),(max),(),(asQ'a'sQrasQasQ  
(1)

where α, which is > 0 and ≦ 1, is a real number used

as the learning rate. γ, which is > 0 and ≦ 1, is the

temporal discount factor. r is the reward after performing

action a under state s and can be evaluated according to

different applications. s' denotes the state after

performing action a under state s. max(Q(s', a')) denotes

the maximum future Q value.

Kao-Shing Hwang (M'93-SM'09) is currently a professor of Electrical

Engineering Department at National Sun Yat-sen University, and an adjoin

professor of the department of Healthcare Administration and Medical

Informatic, Kaohsiung Medical University, Taiwan. He received the M.M.E.

and Ph.D. degrees in Electrical and Computer Engineering from Northwestern

University, Evanston, IL, U.S.A., in 1989 and 1993, respectively. He had been

with National Chung Cheng University in Taiwan from 1993-2011. He was the

deputy director of Computer Center (1998-1999), the chairman of the

Electrical Engineering Department (2003~2006), and the director of the

Opti-mechatronics Institute of the university (2010~2011). He has been a

member of IEEE since 1993 and a Fellow of the Institution of Engineering and

Technology (FIET). His research interest includes methodologies and analysis

for various intelligent robot systems, machine learning, embedded system

design, and ASIC design for robotic applications.

Jin-Ling Lin received the master and Ph.D. degrees in computer science from

the University of Oklahoma, Norman, OK, USA, in 1989 and 1993,

respectively. She is currently a professor with the Department of Information

Management, Shih Hsin University, Taipei, Taiwan. Her current research

interests include machine learning, data science, data mining, information

retrieval, intelligent system, intelligent network routing, and path planning in

logistics.

http://www.ausmt.org/

Kao-Shing Hwang and Jin-Ling Lin

www.ausmt.org 43 auSMT Vol. 8 No. 1 (2018)

Copyright © 2018 International Journal of Automation and Smart Technology

Reinforcement Learning for Box-Pushing
Humanoid Robots

An adaptive state aggregation Q-Learning method

is proposed to enhance the efficiency of reinforcement

learning (RL) as applied to box-pushing tasks for

humanoid robots. First, the decision tree was applied to

partition the continuous state space according to

temporary differences of reinforcement learning, so that

a real value domain can be represented by a discrete

space. Adaptive state Q-Learning was also applied. Figure

2 shows the proposed reinforcement learning for

box-pushing humanoid robots. The upper part depicts

the procedure of building decision trees based on the

adaptive state aggregation (ASA-DT) approach, followed

by the Q-Learning (ASA-QL).

Figure 2 shows the ASA-DT block 2, in which

unVisitedQueue is a first in first out linear queue and was

used to store these leaves for possible splitting. Unvisited

represents the current leaf, which was tested for splitting.

Enqueue() and dequeue() are functions respectively used

to add a leaf for testing split into and remove a leaf from

unVisitedQueue. The method of testing if a leaf needs to

be split, choosing the splitting dimensions, and updating

the state error are discussed in Section 3.1. When no leaf

needs to be tested for splitting, the decision tree is

regarded as being stable in the current environment.

Humanoid robot box pushing with adaptive state

aggregation is described in Section 3.2.

Decision Tree for Adaptive State Aggregation (ASA-DT)

Discretization requires a continuous state space,

and may categorize similar states into a single state.

Reversely, a continuous action space can be interpolated

from a set of some key or representative discrete actions.

The proposed adaptive state aggregation method

produces a decision tree that can adaptively segment the

state space without expert experience. In the beginning,

the decision tree only has a root node to represent the

entire state space, including all information on sensory

inputs and their estimation state errors. After several

training iterations, the root node or some leaf nodes can

be split into two child nodes analogous to two subspaces.

When the training process is performed repeatedly, the

tree grows and the state space is divided into subtler

subspaces. Each internal node of the tree corresponds to

a subspace in the state space. It can make a decision in

the internal node and its decision represents a split in

the subspace by means of a hyper plane perpendicular to

the chosen split dimension. Each leaf node of the tree

corresponds to an exclusive subspace of the state space

and can be regarded as representing a state of the

proposed adaptive state aggregation Q-Learning.

Figure 2. Reinforcement learning for box-pushing for humanoid robots.

In a training iteration, the agent receives a sensory

input vector ut, and finds the most fitting leaf node,

denoted as s, to cover ut. Then, an agent selects an

action according to the corresponding action values in

the leaf node. After taking the action, the agent receives

the next sensory input vector ut+1 and a reinforcement

signal or reward rt+1. The same action is repeated until

the agent enters another leaf node s' if under semi-MDP

[18]. The sojourning period, in which the agent keeps

repeatedly performs the action found in the same node,

is called an epoch and denoted as τ. The action value

of each sensory input vector in the epoch at time t+k,

where 0 ≦ k ≦ τ-1, can be expressed as follows

[18]:

),'(),u(1

1

1 sVrrraQ k

t

k

ktktkt







  


  

(2)

where γ , which is > 0 and ≦ 1, is the temporal

discount factor. The r is the reward and can be evaluated

according to different applications. The 𝑉̅(𝑠′), defined as
 asQs

sleafa
,'max '

' , is the estimated optimal state value in

leaf node s'. The estimated action value of the leaf node

s' is updated using the following formula:

http://www.ausmt.org/

 ORIGINAL ARTICLE Adaptive Reinforcement Learning in Box-Pushing Robots

www.ausmt.org 44 auSMT Vol. 8 No. 1 (2018)

Copyright © 2018 International Journal of Automation and Smart Technology





 /)],(),(),([

),()(),(

auQauQauQ

asQ1asQ

1t1tt

ss

 





(3)

A state error, (ut+k, errt+k), is defined as the pairing

of a sensory input vector ut+k and its estimation error,

where    asQuQerr tsaktkt
t

,,   is derived from Eqs.

(2) and (3). Before updating the estimated state-action
value of leaf node s, all estimation errors of these
sensory input vectors and their corresponding state
errors are recorded into a list of leaf nodes. After
updating the estimated state-action value, the leaf node
decides if a split is needed or not according to the
distribution of sensory inputs and the magnitudes of
estimation errors of the leaf node. If the number of
records, pairs of (ut+k, errt+k) in leaf node s, is smaller than
a predefined threshold, Lth, it implies that the estimated
state-action values may not be convergent to a certain
degree. Leaf splitting is only considered when the
number of records about state errors is larger than Lth.
When the number of records for state errors, Nerr, is

larger than Lth, the mean μerr and variance 2
err of the

estimation errors recorded in the leaf node is used to
decide whether the leaf node should split or not. If the
magnitude of the mean |μerr| is large based on the size
of state space, it means the learning process is still under
progress and the leaf node cannot be split, otherwise the

variance 2
err

is used to determine the accuracy of the

current estimation. When |μerr| is close to zero, a small
variance implies most errors are also small, thus the
action values have been estimated accurately and the
leaf node does not need to split. On the other hand, a
large variance implies errors so divergent that a split may
be essential for estimation improvement. In other words,
if the mean of the estimation error is small, but its
variance is large after the state-action values are trained
and updated several times, it means that the leaf node
cannot represent the subspace well and should be split
into two child nodes [17]. The procedure of determining
whether or not to split a leaf node is shown in Figure 3.
Conditions for whether a leaf node s should be split are
summarized as following:
Condition 1: The number of records for state errors, Nerr,

in leaf node s is larger than a predefined threshold

Lth

Condition 2: The mean of estimation errors, |μerr|, in leaf

node s is smaller than a predefined threshold μth,

which is no less than 0

Condition 3: The variance of estimation errors, 2
err , in

leaf node s is larger than a predefined threshold

2
th

Figure 3. Determining whether leaf node s needs to split or not.

The weighted T statistic is used to select the split

dimension [17]. The recorded state errors in a leaf node

are divided into two groups; one has positive errors and

the other has negative errors, and are respectively called

gp and gn. In each group, elements of sensory input

vectors in the same dimension are regarded as a set of

statistic samples. The input vector is written as

 2
dgdgdgX ,,, ,~  , where dg, and 2

dg, are

respectively the mean and the variance of dimension d of

group g. If 





 2

dgdgdg
ppp

X
,,, ,~  and  2

dgdgdg
nnn

X
,,, ,~ 

have similar means and variances, it means the

dimension i in the state variable has less influence on the

estimation error. The T statistic is used to test the

similarity of 





 2

dgdgdg
ppp

X
,,, ,~  and  2

dgdgdg
nnn

X
,,, ,~  .

The t value of the T statistic is calculated by Eq. (4).

n

n

p

p

np

g

dg

g

dg

dgdg

d

nn

t
2

,

2

,

,,










(4)

where
p

gn and
n

gn are respectively the number of

elements in group gp and gn. A higher t value implies less

similarity between groups gp and gn. The dimension with

the highest t value is chosen as the split dimension. If all

the state error records belong to one group only, the

dimension with the highest variance is chosen as the split

dimension. To avoid long training times, these two new

leaf nodes inherit the state value from their parent node.

The procedure for finding split dimensions is shown in

Figure 4.

http://www.ausmt.org/

Kao-Shing Hwang and Jin-Ling Lin

www.ausmt.org 45 auSMT Vol. 8 No. 1 (2018)

Copyright © 2018 International Journal of Automation and Smart Technology

Figure 4. Finding split dimensions in a leaf node.

Adaptive Sate Aggregation Q-Learning (ASA-QL) for

Box-Pushing Humanoid Robots

To push a box in an enclosed area, a humanoid

robot requires seven representative actions: Turn Left,

Turn Right, Stand Up, Push Up, Push Down, Push Left,

and Push Right. The continuous state space is composed

of the robots' coordinates, the box, obstacles, and the

target area. A scenario example of humanoid robots

pushing boxes is shown in Figure 5. The black box in front

of the robot is the target box to be pushed, the narrow

black box represents an obstacle, and the blue square

denotes the goal.

Figure 5. Humanoid robot box-pushing scenario.

Initially, the root node of the decision tree

corresponds to the entire state space, which is

represented by the coordinates of the robots and box to

be pushed. After performing adaptive state aggregation

reinforcement learning, internal nodes of the tree keep

splitting until no remaining nodes need to be split. At the

end of the training, an adaptive state aggregation

decision tree is built, where each leaf node of the

adaptive state aggregation decision tree corresponds to

an exclusive subspace of the state space and can be

regarded representing a state of Q-Learning.

Since the range of each state differs, the sojourn

time, called an epoch, of each robot in each state is also

different. When a robot enters a state, it is at a decision

point and selects an action at the beginning of an epoch.

It then maintains the action and observes the sensory

inputs from the other observation points until the end of

the epoch. In an epoch, the robot transited from one

observation point to another many times, but all the

observed sensory input vectors belong to the same

representative state, akin to a leaf node in a decision tree.

Therefore, the transition time of every epoch could be

different in different environments.

For different environments, the robot continuously

receives environmental information, including the

position of the box, the goal, and the obstacles;

responses to an action, and rewards or punishments

obtained–depending on its surrounding environment.

The robot controls the direction in which the box moves

by applying force on the box's pushing point, thus the

robot needs to learn how to adjust angles, avoid

obstacles, keep its balance, and push the box to the goal.

In other words, robots not only learn how to push the

box to their goal, but also to maintain a consistent

posture when pushing the box. For the robots to

maintain gestures steadily while pushing the box, it must

be able to stand up and learn how to adjust its angle of

view to avoid surrounding walls after a fall. The robot

must also learn other collision avoidance actions, such as

avoiding collisions with static or moving obstacles. The

robot learning procedure continues until the robot has

pushed the box to the goal.

In addition, the ASA-QL can extend to an n-agent

Markov decision process; that is, robots in a group can

perform the ASA-QL simultaneously by extending the

dimensions of the state space consisting of its own state

space and the actions taken by its partners. Each robot

has an associated reward function, described by a set of

rules for all robots to use in the task.

Each robot's selected actions, next states and

rewards depend on the joint actions of other robots.

Therefore, the robot attempts to maximize its expected

sum of discounted rewards. In practical terms, we

assume that each robot does not know the reward

functions and actions, but can only observe their

immediate rewards. The evaluation of cooperative

rewards relies on the Nash equilibrium, which requires

each robot’s policy be the best response to the others'

policy. Although robots do not know other robots’

reward functions, they can observe other robots’ actions

and subsequent rewards such that each robot performs

an updated Q value whenever it receives a cooperative

http://www.ausmt.org/

 ORIGINAL ARTICLE Adaptive Reinforcement Learning in Box-Pushing Robots

www.ausmt.org 46 auSMT Vol. 8 No. 1 (2018)

Copyright © 2018 International Journal of Automation and Smart Technology

reward when making a transition from s to s' after taking

action a. The expected value in state s for robot i can be

evaluated using the TD method as follows:





 /)],,(),,(),,([

),,()(),,(

ji
1t

ji
1t

ji
t

ji
s

ji
s

aauQaauQaauQ

aasQ1aasQ

 





(5)

where  10, is the learning rate. The extended

version is also applied to a task in which two robots learn
to cooperatively push a box to a target area.

Simulation and Discussion

To evaluate the performance and practicality of
reinforcement learning for box-pushing humanoid robots,
simulations were conducted on a 3D mobile robot
simulator (Webot 5.2.0). The Webot simulator can set
environmental parameters (e.g., gravity and friction
coefficient parameters) to make the proposed adaptive
state aggregation Q-Learning method simulate a more
realistic environment. It also can simulate different kinds
of robots, e.g., wheeled, legged, and flying robots. These
features allow users to design scenarios to reflect their
actual applications. It also supports a range of
programming languages, including C, C++, and JAVA.
Therefore, once the training is finished, this well-trained
box-pushing data can be applied to real world
applications.

Figure 6 shows the simulation system, including a
supervisor, robots, a box, and the environment in which
the box and robots were located. Once the environment
is set, the supervisor transmits the target box and an
action to the robot. Depending on the robot’s
performance of the action, it is either rewarded or
punished and sent it back to the supervisor for further
learning.

Figure 6. Simulation system.

The simulated environment was a field measuring

2 m * 2 m, while the goal was a 0.27 m * 0.27 m square,
the box size was a cube measuring 0.15 m * 0.15 m * 0.3
m, and the obstacle measured 0.25 m * 0.25 m * 0.4.

With each step, the robot moves 0.074 m. Each robot
was equipped with three distance sensors (front, left,
and right) to detect obstacles. The surveillance system
comprises a wide-angle camera mounted on top of the
robot to determine location coordinates, and a wireless
antenna/receiver to maintain communications with the
virtual supervisor and the other robots. As shown in Fig.
7, the humanoid robot consisted of 17 motors – head,
left/right should, left/right arm, left/right hand, left/right
hip, left/right leg1, left/right leg2, left/right ankle, and
left/right foot. Each robot had seven predefined actions:
turn left, turn right, stand up, push up, push down, push
left, and push right.

(a) Simulation l robot (b) Real world robot

Figure 7. Robot prototypes.

The simulated field was split into a 16*16 grid map.

States were represented by robot_x, robot_y, box_x, and
box_y, so the number of possible initial states was 164.
The reward was set by the following rules:
• If the box hits the wall or an obstacle, deduct 100

points.
• If the robot pushed the box to the goal, award 100

points.
• If the Euclidean distance between the robot and the

box exceeds as given threshold, deduct 30 points.
• For other statuses, deduct 1 point.

Four cases were simulated, as shown in Figure 8.
The first three figures show a single robot pushing a box
to the goal, with different initial positions for the robot
with or without obstacles. The last image shows two
robots cooperatively pushing a box to the goal with
obstacles based on the method proposed in Section 3B.
A single robot should push the box to the goal by itself.
Two robots should cooperate to push the box to the goal,
with Q values simultaneously updated using Eq. (5), but
learning takes place individually. Each case has ten
different initial positions for the robots and the box. The
learning rate α was set to 0.8 and the discount rate γ was
set to 0.9.

Figure 9 and Figure 10 show a single robot pushing
a box positioned in front of the robot, to the goal located
to the robot’s left hand side, with and without obstacles.
As shown in Fig. 9, after 100 training iterations, the robot
took 23 steps to reach the goal without an obstacle.
Figure 10(b) shows that the robot could choose to go to
the left or the right of the obstacle, but selected the

supervisor

Goal

Obstacle

Box

http://www.ausmt.org/

Kao-Shing Hwang and Jin-Ling Lin

www.ausmt.org 47 auSMT Vol. 8 No. 1 (2018)

Copyright © 2018 International Journal of Automation and Smart Technology

optimal (right) route, as, shown in Figure 10(c), taking 21
steps to reach the goal after 100 training iterations. In Fig.
11, two robots were positioned at initiation and tasked
with jointly pushing the box to the goal. Both robots
learned continuously and simultaneously but individually.
Figure 11 shows the simulation of two robots pushing a
box with an obstacle.

(a) A single robot pushing a box
to the goal without obstacles.
The box was in front of the
robot, the goal was on the
left hand side of the robot

(b) A single robot pushing a box
to the goal without obstacles.
The box was on the upper
right side of the robot, and
the goal was on the right side
of the robot

(c) A single robot pushing a box
to the goal with an obstacle

(d) Two robots pushing a box
cooperatively

Figure 8. Four simulation cases.

(a) Initial positions (b) After 8 steps

(c) After 20 steps (d) After 23 steps, it reached the
goal

Figure 9. A single robot pushing a box without obstacles.

Finally, the proposed method was compared with
Q-Learning without using adaptive states to show
learning efficiency. Figure 12 compares the steps needed
by the proposed method and conventional Q-Learning
for a single robot to successfully push a box to the
specified goal. Each tic of the horizontal axis represents
ten trials (learning), the vertical axis, in an exponential
presentation, shows the average number of steps for

every 10 trials that the robot took to push the box to the
goal. The purple/diamond line denotes the outcomes of
conventional Q-Learning, which uniformly partitions the
continuous state space into a set of regions and uses a
table to record the experiences. The blue/X line indicates
the results reached by the proposed method. The robot
using the proposed method took fewer steps than those
using conventional Q-Learning and the proposed method
nearly converged after 150 trials.

(a) Initial positions (b) Colliding with the obstacle

(c) Avoiding the obstacle (d) After 21 steps, it reached the
goal

Figure 10. A single robot pushing a box with an obstacle.

(a) Colliding with the obstacle (b) Avoiding the obstacle

Figure 11. Two robots pushing a box with an obstacle.

Figure 12. Performance comparison of Q-Learning with and without

adaptive state aggregation.

Furthermore, Figure 13 shows the training data for

the two robots cooperating to push a box. Each robot
was trained individually. One dimension of the state
space was expanded to accommodate actions the

http://www.ausmt.org/

 ORIGINAL ARTICLE Adaptive Reinforcement Learning in Box-Pushing Robots

www.ausmt.org 48 auSMT Vol. 8 No. 1 (2018)

Copyright © 2018 International Journal of Automation and Smart Technology

partner might have taken. The Q values acquired in
individual learning are "swept" along the new dimension
to decrease the elapsed time in exploration. More than
500 steps are needed for the cooperating robots to reach
the goal before the 100th trial (learning). During the
learning trial, the average number of steps decreased to
about 200 steps. After the 450th trial, the robots seem to
have found an optimal solution and took about 10 steps
to push the box to the goal.

Figure 13. ASA-QL learning procedure for multiple robots jointly

pushing a box.

Conclusions

An adaptive state aggregation Q-Learning (ASA-QL)

is proposed for humanoid robots pushing a box. An

adaptive data-based aggregation scheme to adaptively

discretize a continuous state space was developed. The

sate space is separated into regions of various sizes

depending on the occurrences of states interacting with

the environment. Since learning performance improved

over time, learning results might not be correct in early

episodes. Incorrect estimations of action values resulted

in some redundant splits in tree growth. The proposed

algorithm not only reduced redundant splits resulting

from incorrect learning, but also pruned similar sibling

nodes after each episode. It could clearly reduce the

tremendous number of leaf nodes. To learn to

accomplish a task, a growing decision tree as a way of

building state space was first performed based on the

proposed state partition method so that humanoid

robots can learn more rapidly. Simulations had single or

multiple robots learning to push a box with or without an

obstacles. Comparing the number of steps needed to

finish the box pushing task without and with ASA-QL

showed the proposed ASA-QL outperformed the model

without adaptive state aggregation.

Multi-agent systems differ from single-agent systems

in that several agents exist in the environment modeling

each other's goals and actions. From an individual

agent’s perspective, multi-agent systems vary from

single-agent systems most significantly because the

environment’s dynamics can be affected by other agents.

In addition to system uncertainty, other agents may

intentionally affect the environment. In the case of

multiple agents learning simultaneously, one particular

agent is learning the value of actions in a non-stationary

environment. Thus, the convergence of the

aforementioned Q-Learning algorithm is not guaranteed

in a multi-agent setting. Given certain assumptions about

the way in which actions are selected at each state over

time, Q-Learning converges to the optimal value function.

The simplest way used here was just to add the partner's

actions to extend the state space such that the learning

agents can pretend that the environment is stationary.

Unfortunately, this may work only in the cases shown in

the simulations, and there is no guarantee for the

successful completion of more complicated tasks or given

more peers in a group.

References

[1] Wikipedia. Reinforcement Learning. 2012.

http://en.wikipedia.org/wiki/Reinforcement_learni

ng (accessed Aug. 05, 2017).

[2] L. D. Pyeatt and A. E. Howe, ”Decision Tree Function

Approximation in Reinforcement Learning,”

Technical Report CS-98-112, Fort Collins, Colorado,

Colorado State University, 1998.

[3] B. Baddeley, "Reinforcement Learning in Continuous

Time and Space: Interference and Not Ill

Conditioning Is the Main Problem When Using

Distributed Function Approximators," IEEE

Transactions on Systems, Man, and Cybernetics, vol.

38, no. 4, pp. 950-956, 2008.

doi: 10.1109/TSMCB.2008.921000

[4] S. J. Bradtke and A. G. Barto, "Linear Least-Squares

Algorithms for Temporal Difference Learning,"

Machine Learning 22, pp. 33-57, 1996.

doi: 10.1007/BF00114723

[5] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour,

"Policy Gradient Methods for Reinforcement

Learning with Function Approximation," in

proceeding of Advances in Neural Information

Processing Systems 12, Nov. 29- Dec. 4. 1999, MA,

USA, pp. 1057-1063.

[6] K.-S. Hwang, Y.-J. Chen, and T.-F. Lin, "Q-Learning in

Multi-Agent Cooperation," in proceeding of IEEE

Workshop on Advanced Robotics and its Social

Impacts (ARSO 2008), Taipei, Aug. 23-25, 2008, pp.

1-6.

Doi: 10.1109/ARSO.2008.4653621

[7] S. Sutton, "Generalization in Reinforcement

Learning: Successful Examples Using Sparse Coarse

Coding," Advances in Neural Information Processing

System, no. 8, pp. 1038-104, 1996.

0

500

1000

1500

2000

2500

3000

1 101 201 301 401 501 601 701 801

Time step (trials)

N
um

be
r o

f s
te

ps
 to

 s
uc

ce
ss

http://www.ausmt.org/
https://doi.org/10.1109/TSMCB.2008.921000
https://doi.org/10.1007/BF00114723
https://doi.org/10.1109/ARSO.2008.4653621

Kao-Shing Hwang and Jin-Ling Lin

www.ausmt.org 49 auSMT Vol. 8 No. 1 (2018)

Copyright © 2018 International Journal of Automation and Smart Technology

[8] Y. Zheng, S. Luo, and Z. Lv. "Control Double Inverted

Pendulum by Reinforcement Learning with Double

CMAC Network," in proceeding of 18th

International Conference on Pattern Recognition

(ICPR 2006), pp. 639-642, 2006.

doi: 10.1109/ICPR.2006.416

[9] K.-S. Hwang, Y.-P. Hsu, H.-W. Hsieh, and H.-Y. Lin,

"Hardware Implementation of FAST-Based

Reinforcement Learning Algorithm," in proceeding

of 2005 IEEE International Workshop on VLSI Design

and Video Technology, pp. 435-438, 2005.

doi: 10.1109/IWVDVT.2005.1504643

[10] A.-H. Tan, N.-Lu, and D. Xiao, "Integrating Temporal

Difference Methods and Self-Organizing Neural

Networks for Reinforcement Learning With Delayed

Evaluative Feedback," IEEE Transactioins on Neural

Networks, vol. 19, no. 2, pp. 230-244, 2008.

doi: 10.1109/TNN.2007.905839

[11] H. Ueda, T. Naraki, Y. Nasu, K. Takahashi, and T.

Miyahara, "State Space Segmentation for

Acquisition of Agent Behavior," in proceeding of

IEEE/WIC/ACM International Conference on

Intelligent Agent Technology (IAT'06), Hong Kong,

China, Dec. 18-22, 2006, pp. 440-446.

doi: 10.1109/IAT.2006.113

[12] D. Chapman and L. P. Kaelbling, "Input

Generalization in Delayed Reinforcement Learning:

An Algorithm And Performance Comparisons," in

proceeding of 12th International Joint Conference

on Artificial Intelligence (IJCAI-91), Sydney, Australia,

Aug. 24-30, 1991, pp. 726-731.

[13] K.-S. Hwang and Y.-J. Chen, "Tree-like Function

Approximator in Reinforcement Learning," in

proceeding of 33rd Annual Conference of the IEEE

Industrial Electronics Society (IECON 2007), Nov. 5-8

2007,Taipei, pp. 904-907.

doi: 10.1109/IECON.2007.4460012

[14] R. Munos and A. Moore, "Variable Resolution

Discretization in Optimal Control," Machine

Learning, vol.49, no. 2-3, pp. 291-323, 2002.

doi: 10.1023/A:1017992615625

[15] L. P. Kaelbling, M. L. Littman, and A. W. Moore,

"Reinforcement Learning: A Survey," Journal of

Artificial Intelligence Research, vol. 4, pp. 237-285,

1996.

[16] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction, Cambridge: MIT Press, 1998.

[17] Y.-J. Chen, “A Self-Organizing Decision Tree

Approach to Policy Sharing of Multi-Agent Systems,”

Ph.D. Dissertation, Department of Electrical

Engineering, National Chung Cheng University,

Taiwan, 2009.

[18] T. K. Das, A. Gosavi, S. Mahadevan, and N.

Marchalleck, "Solving Semi-Markov Decision

Problems Using Average Reward Reinforcement

Learning," Management Science, vol. 45, no. 4, pp.

560-574, 1999.

doi: 10.1287/mnsc.45.4.560

http://www.ausmt.org/
https://doi.org/10.1109/ICPR.2006.416
https://doi.org/10.1109/IWVDVT.2005.1504643
https://doi.org/10.1109/TNN.2007.905839
https://doi.org/10.1109/IAT.2006.113
https://doi.org/10.1109/IECON.2007.4460012
https://doi.org/10.1023/A:1017992615625
https://doi.org/10.1287/mnsc.45.4.560

