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Abstract: Map building for plain spatial soundings, such as a long and straight corridor in simultaneous localization and 

mapping (SLAM) is a challenging problem because of lacks of distinguishable landmarks. Such an environment is highly 

possible to induce erroneous mapping results, such as alias problems. This paper presents a scan matching algorithm 

with odometer prediction using Extended Kalman Filter (EKF) and an optimal path planning based on regression 

subgoals. The scan matching process can relax the problems of local minima by means of an effective correction in the 

odometrical information. By iterating odometrical corrections in each step of running motion model, the matching result 

can be better than one only believes in individual information from scanning or odometry. Meanwhile, an optimal path 

planning utilizing an A* algorithm with a regression method is introduced to ensure a mobile robot be able to move 

elaborately around the corner and speed up along a straight line. Experiments in an indoor environment have been 

conducted to verify the effectiveness and validation of the proposed techniques. 
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Introduction 

     In today’s world robots are getting more important 

in human life, not just robot arms for the manufacturing 

propose. Autonomous robots have been applied to 

industry, academic applications, and so on. The costs and 

the sizes of sensors and microprocessor reduced 

tremendously recently make the autonomous robots 

affordable for office and home. Indoor navigation 

techniques have experienced an amount of interest for 

research proposes over the last three decades. Recent 

research is working on utilizing the existing algorithm to 

find an effective way for autonomous robots that will 

make robots into our society without harm and people 

can work with robots, live with robots. The majority of 

recent study implementation and conceptual theory of 

autonomous robot navigation are in the field of tight-

budget projects, such as small-scale mapping with the 

high-end device or large-scale SLAM with many closed 

loops. In the recent years, low-cost laser rangefinders 

have been used commonly among autonomous robot 

applications due to its price. The limitations of high-end 

laser rangefinders are energy consumption and heat 

dissipation of the device. The low-cost laser rangefinders 

have the ability to trace terrains in the contiguous area 

and consume much lower power than the high-end device, 

makes it really suited for small area inspection, mapping 

proposes. 

Robot navigation in a dynamical environment can be 

classified into two main categories; one is how to create 

an accurate map of the environment's characteristics; the 

other is how navigation generates a safe path with the 

area-correct map and dynamic obstacles. Many types of 

research on SLAM and navigation algorithms have been 

developed to solve common scenarios in the environment 

[1-3]. These algorithms should guarantee their 

performance with cheap sensors and can be easily 

obtained from the navigation program [4]. Studies on the 

SLAM problem have been done in recent years, typical 
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indoor environment using Rao-Blackwellized particle 

filters (RBPFs) will be a high-performance solution, and 

has been written into open source software such as 

Gmapping [5]. The other renowned technique is the Bayes 

filter method, which iteratively calculates posterior 

distributions of robots’ poses by identification of 

landmarks, and a variation of this method come as Kalman 

Filters (KFs) [6]. In recent decades, there is a rich number 

of studies on KF-based algorithms being implemented in 

the literature, such as the Extended Kalman Filters (EKFs) 

and RBPFs. Lately, some popular methods make use of 

high scanning rates of rangefinders, which heavily rely on 

consecutive scan matching of sensor data and combine 

with multiresolution occupancy grid maps (Hector SLAM) 

[7] or dynamic and approximate likelihood fields for 

measurement [8]. Hector SLAM is adopted in this paper 

for the final result of position prediction. An advanced 

method likes sensor fusion in complementary 

characteristics of Laser Range Finder (LRF) that can map 

under reduced visibility conditions, e.g. particles of smoke 

[9]. In addition, classifying graph-based algorithms [10][11] 

which use a robust function that generalizes classification 

and discard irrelevant measurements also is an efficiency 

solution to maintain large-scale maps. On the other hand, 

calculating shortest paths with the existed maps is the 

core partition in the navigation process. Numerous 

classical graph search algorithms have been developed 

and implement in a real-life application, such as Dijkstra's 

algorithm [12], and A* search algorithm [13]. A* algorithm 

searches for the minimization of a cost function to 

generate an adequate path, which ensures the optimality 

of the produced path, but path evaluate from lowest cost 

will probably not be the path human want. Dijkstra is a 

special case for A* algorithm with the heuristics set to zero. 

Both algorithms return an optimal path, but the 

redundant path pose (node) in the map will be more as 

the resolution of the map getting higher. Regression 

reduction method proposed by this paper could be the 

solution to this problem. Both for SLAM and navigation, 

the most important problem, localization, is the process 

of estimating the next pose of the robot with regard to a 

given map of the environment. Compare with outdoor 

environments, localization in the indoor environment is 

far more complicated. Roughly speaking, the main task of 

a robot in an indoor navigation or mapping is able to sense 

how it moves when it receives a motion command 

(odometer) and the information of environment around it 

(vision or rangefinder). Bring together sensory 

observations as the base information, the robot can find 

out exactly current position by mean of maximum 

likelihood of observations given already exist map [14][15]. 

Present work done by this paper is on the navigation of 

differential wheeled odometer robot in an indoor 

environment without the use of high-end rangefinders or 

other positioning sensors. Optimal path planning method, 

which utilizes multi-regression line as the alignment of 

subgoal pose, will be used to reduce the complexity of all 

navigation poses in the route. Full navigation and mapping 

system is implemented and verified in experiments on a 

differential wheeled robot. This paper is divided into five 

sections as follows. In Section II, the background 

knowledge including extended Kalman filter and scan 

matching method is briefly introduced; In Section III, 

detailed methods of proposed navigation design for the 

differential wheeled robot are explained. In Section IV, the 

implementation of the proposed navigation system and 

experimental results of drawing a corridor environment 

are reported to verify the proposed method. Finally, 

Section V concludes the paper. 

Background 

Hector SLAM 

Hector SLAM algorithm is selected as the framework 

for this work. This is primarily because this SLAM algorithm 

is suited to the condition that odometer information 

cannot be acquired, or error of the odometer is over the 

tolerance. A long-range rangefinder with high scanning 

rates is required in this method and the world coordinate 

setting with the z-axis pointing upwards and the x-axis 

pointing into the forward direction of the differential 

wheeled robot at startup. The map available is the 
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occupancy grid maps, which has discrete nature limitation 

of the precision that is not directly accessible and will be 

achieved by computation of interpolated values or 

derivatives. Bilinear filtering is employed for interpolating 

sub-grid cell value to estimating occupancy probabilities 

and derivatives. In this way, the grid map discrete value 

surface is continuous in any single point of the map. Given 

a point in a continuous map, 𝑃𝑚 , the occupancy value, 

𝑀(𝑃𝑚) , the gradient will be in the form: 
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If the occupancy value is approximated by using the 

bilinear method, linear interpolation with closest integer 

coordinates 𝑃00, 𝑃10, 𝑃10, 𝑃11 can be represented as:  
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And derivatives of the map in a specific point can be 

shown as: 

 

 

 

 )()(                

)()(
)(

0111

01

1

0111

01

0

PMPM
yy

yy

PMPM
yy

yy

x

PM m
















 

 

 )()(                

)()(
)(

0111

01

1

0111

01

0

PMPM
xx

xx

PMPM
xx

xx

y

PM m
















 

(3) 

 

Scan matching is based on optimization of the 

alignment of beam endpoints with the map obtained so 

far. Gauss-Newton approach is utilized to predict the next 

pose without search data association between the end-

point. Begin with a start estimate pose, ξ = (𝑝𝑥 , 𝑝𝑦 , 𝜓)
𝑇

, 

scan matching aims to minimize the error of the 

occupancy of end-point  𝑀(𝑆𝑖(𝜉))  and map (value 1, 

means the obstacle exist in the map), and can be written 

as follows,  
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where 𝑆𝑖(𝜉)  is the transform of the end-point scan 

received in robot frame to the world frame,  
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Gauss–Newton algorithm is used to solve non-linear least 

squares problems, target function 𝑟𝑖  can be defined as: 

 

 ))((1 ii SMr   (6) 

 

The recurrence relation for Newton's method for 

minimizing a target function can be represented as follows: 
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Assume the robot position has a very little movement Δ𝜉 

which is small enough to be ignored, the gradient vector 

G of target function can be written as: 
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And H denotes the Hessian matrix, obtained by ignoring 

the second-order derivative terms. 
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where the derivative of 𝑆𝑖(𝜉) can be shown by matrix: 

 

 
 



















yixi

yixii

ss

ssS

,,

,,

)sin()cos(10

)cos()sin(01








 (10) 

 

And now, calculate a step Δ𝜉 towards the minimum, 
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The non-smooth linear approximation method in 

Hector SLAM with a point coordinate in a map relies on 

the scan matching information at each end-point for 

proper convergence and suffers from strong local minima 

in the long corridor environment. The pseudocode of scan 

matching can be summarized as follows: 
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Extended Kalman Filter 

The Markov localization model represents robot 
position using a probability density function, which is very 
general but lacks efficiency. Sensor fusion problem is the 
solution to robust localization, not just relies on the 
probability density curve or motion model. Nowadays 
robots usually come with a lot of sensors on it, each 
sensor reading provides a portion to minimize the 
probability in the current robot position; however, each 
sensor is suffering from noise under certain condition. 
Optimal localization should take as much sensor readings 
into account as possible, but also carefully handle the 
information provided by all of these sensors. In Kalman 
filter, the next state probability (Motion Model) 
𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1) must be a linear function with Gaussian 
noise, and can be expressed by following equation: 

 

 tttttt uBxAx  1  (12) 

 
where 𝑥𝑡 and 𝑥𝑡−1 are state vectors, and 𝑢𝑡 is control 
command at time 𝑡. 𝐴𝑡 is a matrix implied that how the 
state evaluate from previous the state without controls or 
noise. 𝐵𝑡  is a matrix of corresponding control changes 
map to the next state. 𝛿𝑡  is the random variable 
represents prediction noise, zero mean Gaussian noise.  

The measurement probability (Observation Model) 
𝑝(𝑥𝑡|𝑢𝑡 , 𝑥𝑡−1) is given as following: 
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where 𝐶𝑡 is a matrix of relation of observation and state. 

When robot is in the state 𝑥𝑡 , the observation will be 

received ideally.  

Extended Kalman Filter (EKF) can overcome the 

linearity assumption of Kalman Filter (KF) that both the 

motion model and sensor model are linear Gaussian. The 

key idea of EKF is called linearization. The probability of 

next state and measurement probability are governed by 

nonlinear functions 𝑔 and ℎ, 

 

   tttt xugx   ,, 1  (14) 

   
   ttt xhz   (15) 

   

EKF calculates an approximation to the true belief, 

which is represented by a Gaussian. The belief state 

𝑏𝑒𝑙(𝑥𝑡) at time 𝑡 is represented by a mean 𝜇𝑡  and a 

covariance Σt. EKF algorithm is similar to the Kalman filter 

algorithm and is stated in the following table: 
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6.   tttt CKI   

7. return t , t  

A* Search Algorithm 
A* is a graph search algorithm that finds the 

minimum cost path. Start from a given initial node, A* 

search the shortest (low-cost) path to the goal node. This 

algorithm can be primarily real-time applied in computer 

games or robot navigation task to find the shortest path. 

It potentially needs to search through a huge amount of 

the data node. A* search algorithm uses an efficient 

heuristic function to reduce search space. If heuristic 

function equals to zero, the algorithm becomes Dijkstra's 

pathfinding algorithm; if the heuristic function has a high 

value, the algorithm becomes Breadth-First-Search (BFS). 

Thus heuristic value is the key idea of the behavior of A*. 

In the condition of low heuristic value, the algorithm will 

slow down, and try to find the shortest path, but may 

waste a lot of time. If it is a very high value, then the 

process becomes very fast but the shortest path will not 

be ideal. The tradeoff between efficiency and accuracy of 

the algorithm depends upon chosen the value and it 

should be very carefully selected in a different scenario. 

The classic expression of the A* algorithm is as follow: 

 

 )()()( xhxgxf   (16) 

 

where 𝑓(𝑥) is the sum of path-cost function 𝑔(𝑥) and 

heuristic function ℎ(𝑥). 𝑔(𝑥) is the actual total cost of 

the current node 𝑥  from the start node. ℎ(𝑥)  is the 

estimation of cost of the current node to the target node 

estimates, which tells how far the distance to the goal 

node from the current node 𝑥 . Heuristic estimate of  

ℎ(𝑥) determines the way an agent searches the path. In 

the way, an agent keeps finding the lowest-cost node in 

the neighbor nodes, A* algorithm is guaranteed to give the 

shortest path if possible. Detailed steps of A* search 

algorithm are shown below: 

 

1. A_Star_Search(start, goal): 

2. Initialized open, close = {} 

3. Initialized current, neighbor = empty 

4. open add start 

5. while current is not goal 
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6.    current = lowest f cost node in open 

7.    open remove current 

8.    close add current 

9.    foreach neighbor of current 

10.      if neighbor is not traversable then 

11.        skip to next neighbor 

12.      end if 

13.      g(neighbor)=g(current)+cost(current, neighbor) 

14.      h(neighbor) = distance to the goal 

15.      f(neighbor) = g(neighbor) + h(neighbor) 

16.      open add neighbor 

17.     end Foreach 

18. end while 

19. return close 

Proposed Method 

System overview of the proposed scheme is 

illustrated in Fig. 1. The proposed scheme can be divided 

into two parts, one is the map construction in SLAM, and 

the other is path poses reduction in the navigation process. 

The main contribution of this paper in SLAM is the fusion 

of the odometer readings and control command to 

calculate the initial estimate pose of a robot. It is helpful 

to perform SLAM in a long corridor as only a short-range 

rangefinder is available. The desired input, input 

command and odometer reading information received by 

a robot are fused in the EKF in SLAM process. In the 

navigation part, the A* path planner generates raw path 

poses and then the subgoal filter is applied to remove the 

redundant poses from raw path poses. Finally the 

remained key poses in the path are sent to the navigation 

controller of the mobile robot. 

 

Navigaiton

SLAM

Map

Odometer

Estimate Pose EKF Scan Matching

Mapping

LIDAR

ControllerPath Planning SubGoal

 

Figure 1. System overview of the proposed scheme. 

 

Odometer EKF with Scan Matching 

Original scan matching method proposed in Hector 

SLAM is not able to jump out of local minima in a long 

distance corridor environment, it only performs a good 

result with the high-end laser rangefinder device. After 

several experiments, the reason why the iteration result is 

not satisfied the real environment is that Gauss-Newton 

equation works well in acquiring local minima position, 

but the position of the robot is not always in the local 

minima when it is still moving. This situation casues the 

scan matching process to derive wrong positions in 

acquiring the map so far. If the workspace is lack of 

distinguishable landmarks, the scan-based matching 

algorithm will fail. 

The architecture of the combined algorithm is 

shown in Fig. 2. Method proposed is a modification in the 

odometer sensor reading, by fusing raw sensor readings 

with control command𝑢 = (𝑣, 𝜔)𝑇  . Based on the EKF 

motion model as equation 14, a nonlinear motion 

equation is given as follows: 
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Figure 2. Architecture of combined EKF and scan matching. 

 

Given the readings of odometer sensors, 𝑧𝑡 =

(𝑣𝑙 , 𝑣𝑟)T, 𝐾𝑡 in the EKF can be calculated as follows: 

 

   1
 t

T

ttt

T

ttt QCCCK , (18) 

 
and the next state of the odometer can be computed by 
the equation 

  
tttttt CzK   . (19) 

 
This new variance matrix is updated by: 
 

   tttt CKI   (20) 

 

The end-point can be transformed into the world 

coordinate by submitting 𝜉𝑡 into scan matching process: 
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The gradient vector of the target function will be 
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And Hessian matrix is given as follows: 
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Finally, add the step pose Δ𝜉𝑡 to 𝜉𝑡: 

 GHtt

1

1



   (24) 

   
Algorithm will draw the scan lines with regard to 

pose 𝜉𝑡  into the map at the end of the scan matching 
process. The first part is the use of the odometer readings 
and control command in the EKF. Second part is the scan 
matching method which remains the same as Hector 
SLAM. In this scheme, before the mapping action, robot 
will go forward or backward if command 𝑢 is none zero, 
and then the scan matching will calculate gauss-newton 
approximation according to the new position. The 
odometry EKF with scan matching is shown below, and 
flowchart of the proposed process is shown in Fig. 3. 
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11. return t  

 

Path Planning with Subgoal 

A* path search algorithm generates an optimal path 
in the environment with obstacle cost. Each node has a 
state value of the sum of total cost 𝑔  and heuristic 
function value ℎ , and next neighbor state value will 
accumulate the current state value into the total cost 
value. Equation is shown as follows: 

 

 
g(neighbor) = g(current) + cost(current, 

neighbor) 
(25) 

   
The cost function is the distance between the current 
state and the neighbor state.  
 

 h(neighbor) = d(g, current) (26) 
   

The heuristic function value ℎ is the distance between 
current 𝑑(𝑔𝑜𝑎𝑙, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡). In the whole process, make 
sure pick the lowest state value (or lower heuristic value 
when the same), the shortest path will be found if it exists. 

The subgoal filter takes the path 𝑃 = {𝑃1 , 𝑃2 … 𝑃𝑛} 

pass from the A* algorithm as the input, and uses the first 

and second poses in the path as the standard regression 

line, definition is shown below: 

 

 L =(P2x- P1x, P2y- P1y)T (27) 
   

And measure whether the line 𝐿′, which is between the 

next two points, is in the tolerance angle range.  
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Figure 3. Flowchart of scan matching with odometer EKF. 

 

Assume the empty output set 𝑄 = {}, if angle is 

larger than the previous regression line, add the current 

point 𝑃𝑖  into the output 𝑄 set, 

 

 iPQ   (29) 

   

After examining all node in the path, the 𝑄 set will 
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remain the refined poses. The subgoal filter algorithm is 

shown below. 

 

1. Subgoal(P): 
2.   Initialized Q= {} 
3.   L ←(P2x - P1x, P2y - P1y)

T 

4.   Pi ←Pa\ 

5.   Q←P1, P2 

6.   while Pi is not Pn 

7.     L' ←(Pix – P(i-1)x, Piy - P(i-1)y)
T 

8.     if angle(L') larger than angle(L) than 
9.       L ← L 

10.       iPQ   

11.     end if 
12.     Pi ← next 
13.   end while 
14. return Q 

Experiment and Discussion 

In this section, the implementation of the proposed 
method on a U-bot robot platform is described. The 
experimental setup and experimental results are 
conducted to compare the performance of localization 
and mapping. 

 

Robot specification and Environment Setup 

The mobile robot used in our experiments is the 
differential wheeled robot made by Industrial Technology 
Research Institute of Taiwan. The robot appearance is 
shown in Fig. 4. A short-range laser rangefinder (URG-04LX) 
mounted on the U-bot platform is used to acquire the 
ground truth of the environment. The computing platform 
(Laptop) has an Intel Core i5-5200U, 4GB memory, GT 
930M graphics card. Robot operating system is used in our 
experiments as messaging platform for the subsystems to 
exchange various messages. 

 

 

Figure 4. The U-bot robot platform developed by ITRI. 

 
The workspace is a 60 × 22.2𝑚2  corridor field 

with a 6𝑚 foyer in the middle of the map. Fig. 5 shows 
the map built from sensor data of a long-range laser 
rangefinder (UTM-30LX). The map is perfect in distance 
translation and angular transformation. 

Fig. 6 depicts the feature points in the workspace 

consisting of the short corridor, long corridor, and a foyer. 

The long corridor has almost the same scan information 

along the way and has a long distance path which can 

determine the straight line characteristic of the SLAM. This 

scenario can test the performance of the SLAM with the 

odometer noise and scan noises exist at every step. The 

short corridor has the identical scan information in each 

scan, but less noises or obstacles in the corridor, which 

implies the stability of the SLAM with a pure surrounding 

circumstance. The foyer is a special case in the SLAM 

problems. When robot passes the foyer, if scan distance is 

less than the width of the foyer, the acquired data from 

laser rangefinder is not enough for mapping correctly. 

Therefore SLAM localization relies on scan matching turn 

out to be failed. 

 

 

Figure 5. Map generate with 30m Laser rangefinder. 

 

 

Figure 6. Feature point in the map. 

 

Experiment Results 
To verify the effectiveness of the proposed 

approach, experiments are performed in the same 
environment described in the previous section. Hector 
SLAM, OdometryUpdate SLAM, and OdometryEKF SLAM 
are performed for comparison by means of retrieving 
laser scanning data from a record file. A record file, which 
is called a "bag" file in the ROS platform, contains all of the 
odometry measurement, command of linear velocity and 
angular velocity, laser scan sensor readings and all the 
other topic's messages. Through the replay of the bag file, 
all experiments can be assumed conducted in the same 
condition, same sensor readings. All the algorithms are 
processed on the ROS platform which involved many 
useful libraries and tools. However, there is a frequency 
issue as programs running on the ROS platform, thus the 
results do not converge to the same map contour.  

As shown in Fig. 7, a mobile robot using the Hector 

SLAM method creates a map with incorrect length in long 

corridor environment due to the laser scanning cannot 

http://www.ausmt.org/


 ORIGINAL ARTICLE  Implementation of Odometry with EKF in Hector SLAM Methods 

www.ausmt.org  16           auSMT Vol. 8 No. 1 (2018) 

Copyright ©  2018 International Journal of Automation and Smart Technology 

identify the difference of walls along the route. Besides, 

lack of distinguishable landmarks in the foyer area results 

in wrong mapping both in the length and angular distance. 

Fig. 8 shows the result of the improved scan matching 

method, called OdometryUpdate SLAM, which believes in 

odometer in short distance movement and applies it to 

the current position. The map created by 

OdometryUpdate SLAM satisfies the length of route in 

long corridor environments. It is worth noting that 

overshot in the position estimate occurs when scan 

matching calculation falls in the same direction of the 

odometer updating. Compared to the original Hector 

SLAM, maps created by the OdometryUpdate SLAM are 

much better. Therefore the fusion of the information from 

odometer and laser rangefinder might be a good solution 

to this phenomenon.  

Fig. 9 illustrates the map built by scan matching with 

the odometer in extended Kalman filter, called 

OdometerEKF SLAM. The consequence of OdometerEKF 

SLAM is not too much optimistic and not too much 

pessimistic with regard to the current position, and the 

measure of corridor length is between the Hector SLAM 

and OdometryUpdate SLAM.

 

 

Figure 7. Hector SLAM mapping result. 

 

 

Figure 8. Odometer update and scan matching. 

 

 

Figure 9. OdometerEKF and scan matching. 

 

Three trajectories generated by Hector SLAM, 

OdometryUpdate SLAM, and OdometryEKF SLAM are 

compared in Fig. 10. Detailed analysis of the three 

featured areas are illustrated in Fig. 11-13. Each figure has 

a real data line which represents the real-life world length.  

In Fig. 11, Hector mapping length is always not able 

to map the real value, in contrast, OdometryEKF SLAM and 

OdometryUpdate SLAM are close to the real value. In Fig. 

12, a foyer is the area that robot forward scan readings are 

vain due to a short-range laser rangefinder, thus the 
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Hector SLAM will fail in this area. In Fig. 13, a short 

corridor is the area that shows the effect of OdometryEKF 

SLAM keeping the position close to real value while 

OdometryUpdate SLAM has an obvious overshoot in the 

length measurement of the short corridor. 

 

 

Figure 10. Comparison of trajectories generated by the three methods. 

 

 

Figure 11. Length graph in long corridor area. 

 

 

Figure 12. Length graph in foyer area. 

 

 

Figure 13. Length graph in short corridor area. 

Conclusions 

This paper provides a method for solving SLAM 

localization problem in long corridor environments with a 

low-cost short-range laser rangefinder. In path planning, a 

redundant pose reduction method called subgoal filter is 

applied to the path generated by A* algorithm for 

increasing the efficiency of navigation when a robot 

executes path following behavior. The map created by the 

proposed OdometryEKF SLAM can be guaranteed in 

distance accuracy, but accuracy of angular distance in a 

long corridor with changeless scenery is not good enough. 

It will induce just a little impact on navigation if robot 

localization is correct. Correction of the angular distance 

in long distance may need a recalculation in the closed 

loop. Lack of further scan information, the robot assumes 

the odometry and local scan information can be fused in 

short distance. It is helpful for map construction if 

localization depends on not only scan features but also 

odometer readings and makes the proposed method 

more flexible and effective than the original Hector 

scheme. Path planning provides users the full detail of the 

path on the map. But only corners and the points close to 

obstacles are essential and should be taken into 

consideration for path following. It can speed up the robot 

in the simple straight line navigation and corner turn, but 

the orientation will be the extended problem if the robot 

has to ensure the heading direction. From what has been 

mentioned above, the proposed SLAM localization using 

EKF is effective in any place including corridor scenario. 
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