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Abstract: Unmanned Aerial Vehicles (UAVs), or drones, have recently become a favorable solution for fast parcel 

delivery due to their maneuverability and advances in navigation technologies. With the limitation of battery capacity 

and payload of drones, it is crucial to consider both efficiency and cost while conducting the tasks. Meanwhile, UAVs 

should not collide with each other while traveling to customers. In this article, we propose a UAV parcel delivery system 
involving deep reinforcement learning (DRL) approach for collision avoidance and a genetic algorithm for route 

optimization. Specifically, a delivery center generates near-optimal routes, loading UAV with parcels according to 

demands. Each UAV takes charge of delivering packages in compliance with the assigned route while avoiding collision 
with each other. We utilize DRL to achieve collision avoidance without having prior knowledge about the trajectories of 

other UAVs. Additionally, we adopt a genetic algorithm to obtain the lowest energy cost path for each UAV. To find such 

an optimized path, we solve a capacitated vehicle routing problem (CVRP) with a modified cost function and extra 
constraints. Realistic simulations using a physics engine and software-in-the-loop (SITL) are conducted to evaluate the 
feasibility of the proposed methods. 
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I. Introduction 

Unmanned Aerial Vehicles (UAVs) are recently being ex- 

plored due to their potential to be adopted in parcel delivery 

systems. With the growth of demands in the logistics and e-

commerce industry, many logistics companies have shown 

great interest in using UAVs for delivery since parcels can be 

delivered more efficiently. Amazon Prime Air has become a 

pioneer in this field, expecting to adopt drones to replace 

delivery trucks, making the delivery faster compared to the 

present day [1]. This parcel delivery scheme is called the 

drone-only scheme, where the drone departs from the depot, 

delivers goods to the customer, and then returns to the depot. 

This scheme suffers from the distance limitation due to the 

battery capacity of the drone. Several publications proposed 

methods to expand the coverage area by adding charge 

stations and warehouses in the network [2], [3], [4]. 

In recent years, another scheme, called the Truck-and-

Drone scheme or last-mile drone delivery, has drawn much 

attention in the research community. The Truck-and-Drone 

scheme expands the delivery coverage and improves energy 

efficiency by combining heterogeneous vehicles. To coordinate 

drones with trucks, Wang et al. proposed a heuristic routing and 

scheduling algorithm to solve the hybrid parcel delivery problem 

[5]. Nirupam Das et al. synchronized drones and delivery trucks 

by developing a multi-objective optimization model that 

minimizes travel costs and maximizes customer service level in 

terms of timely deliveries [6]. Chen et al. developed a drone 

delivery system that achieves mixed indoor- outdoor autopilot 

operation [7].  

For a system with multiple UAVs, it is crucial to consider the 

risk of collision among them. It is difficult for each UAV to avoid 

others without a centralized control mechanism. Therefore, we 

propose a decentralized collision avoidance method by adopting 

a DRL-based approach. Additionally, each UAV has a payload 

limit which limits the weight and quantity of parcels the drone 

can carry. The sequence of how UAVs travel to customers 

becomes critical since the gross weight of the UAV will directly 

impact battery drain and, furthermore, affect the logistics cost. 

As a solution, we aim to minimize the total energy consumed by 

UAVs while traveling instead of minimizing total travel distance 

like the traditional capacitated vehicle routing problem (CVRP). 

For optimization, we adopt a genetic algorithm with a custom 

fitness function.  

In this article, we demonstrate the feasibility of the 

proposed collision avoidance method by conducting realistic 

simulations in a physics engine with SITL flight controller 

simulation on Robot Operating System (ROS) [8]. We also 

simulate the entire UAV parcel delivery process in a campus 

environ- ment, including loading packages, traveling to 

customers, and dropping packages. The contributions of this 

article can be summarized as follows:  

• An application of DRL-based obstacle avoidance 

method to a parcel delivery system consisting of 

multiple UAVs with Soft Actor Critic Framework.  

• The usage of a genetic algorithm to generate suitable 

routes for multiple UAVs in the system based on total 

energy consumption.  

The rest of this article is organized as follows: Section II 

presents related work. Section III states the system architecture 

and the problem definitions. Section IV addresses the UAV 

collision avoidance problem with a state-of-the-art deep 

reinforcement learning algorithm. Section V discusses the route 

optimization problem for capacitated vehicles in UAV parcel 

delivery tasks. Section VI carries out the validation and 

simulation results. Section VII concludes the article.  

 

II. Related Works 
A. UAV Collision Avoidance 

Collision avoidance is a fundamental requirement for multi- 

UAV systems. Centralized collision models for UAVs are pre- 

sented. Loayza et al. proposed a centralized model providing 

feedback in real-time to the agents while considering trajec- 

tory calculation and collision avoidance [9]. Mellinger et al. 

presented an algorithm for the generation of optimal 

trajectories for teams of heterogeneous quadrotors in three-

dimensional environments with obstacles by formulating the 

problem us- ing mixed-integer quadratic programs (MIQPs) 

[10]. Both solutions rely on a central server communicating 

with every agent and generating global control commands 

according to the observations for all UAVs. However, 

implementing such centralized systems in large environments 

is usually difficult since it heavily relies on the communication 

between agents and the server; delay or interference in signal 

transmissions may lead to unwanted results.  

In recent years, researchers have turned their interest into 

decentralized methods. In such systems, agents take action 

based only on their own observations. Several works [11]– [13] 

have successfully adopted reinforcement learning to train 

policies to plan collision-free trajectories by leveraging local 

observations. However, the method proposed in [11] assumes 

all UAVs fly at the same speed and can only output dis- cretized 

turning angles, which may cause jerky movement. The off-

policy actor-critic-based reinforcement learning algorithm, 

deep deterministic policy gradient (DDPG) [14], used in [12], is 

hyperparameter-sensitive [15] and suffers from finding the 

optimal policy due to its non-stochastic characteristic. 

Researchers in [13] formulated the UAV collision avoidance 

problem with wireless connectivity constraints as a Markov 

decision process (MDP) and optimized the value function of 

the MDP to find the optimal policy. However, the proposed 

method was not tested in a realistic environment, so one 

cannot guarantee the feasibility of the policy in an 
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environment with noises or delays.  

A method based on Multi-Agent Reinforcement Learn- ing is 

presented in [16] to conduct large-scale searching in an 

unknown environment with multi-UAVs. Furthermore, a new 

multi-agent recurrent deterministic policy gradient (MARDPG) 

algorithm is proposed in [17] to achieve the goal of obstacle 

avoidance for multi-UAVs. In [18], a Deep Reinforcement 

Learning-based collision avoidance algorithm with Attention-

Based Policy Distillation is proposed, enabling UAVs to conduct 

obstacle avoidance more efficiently and accurately. Hui et al. 

discuss the use of a Decentralized Exploration Planning 

approach based on a lightweight in- formation structure for 

multi-UAV systems [19]. Although various approaches for 

tackling collisions among UAVs have been published, none 

were applied to parcel delivery systems, indicating significant 

potential for research in this field.  

 

B. Scheduling and Routing Problems for Drone Delivery 
    As drone technology matures, many large organizations 
have shown interest in drone delivery. Even though significant 
efforts have been put into developing drone delivery tech- 
nologies, the drone delivery planning problem poses a new 
challenge due to limited flight range and payload of drones. 
Traditional traveling salesman problems (TSP) or vehicle rout- 
ing problems (VRP) are no longer adequate for formulating the 
drone delivery routing problem. Some variants, such as [20] 
and [21], proposed flying sidekick traveling salesman problem 
(FSTSP) and vehicle routing problem with drones (VRPD) 
respectively. The VRPD is considered an extension of the FSTSP. 
While the FSTSP considers only one drone and one truck in the 
entire operation, VRPD utilizes multiple trucks and drones to 
make deliveries while considering the capacity of both trucks 
and drones. However, both works ignored factors crucial to 
practical drone delivery, such as changing payload weights and 
energy costs. Yao et al. discovered a scheduling approach using 
an Evolutionary Utility Prediction Matrix, which can adapt to 
the environment dynamically [22]. However, precise tuning of 
parameters is needed.  
    Recently, several researchers have focused on reducing cost 
or energy consumption. Dorling et al. proposed solving drone 
delivery problems (DDPs) with a multi-trip VRP (MTVRP) [23]. 
They focused on minimizing cost or delivery time while 
considering battery weight, payload weight, and drone reuse. 
In [24], the authors focused on minimizing the total energy 
consumption in electric vehicle routing problems with drones 
(EVRPD). In this thesis, we consider a similar scenario with 
drones being the only vehicle in the system. We adopt the 
energy cost function in [24] and use it in a genetic algorithm.  

III. Problem Definitions 

We address two major problems in this article: UAV col- 

lision avoidance and optimized route solutions in the parcel 

delivery system. We first state the definitions of the two 

problems respectively, then delve into detailed content in the 

following sections.  

 

A. UAV Collision Avoidance  
Consider an environment consisting of a set ℳ =

{1,  2,   … ,  𝑚}  of  𝑚 UAVs flying at a constant altitude. For 

each UAV to avoid collisions with others we must ensure the 

distance 𝑑𝑖,𝑗  between each UAV is less than the minimum 

collision distance 𝑑𝑚𝑖𝑛 as shown in (1). 

 

𝑑𝑖,𝑗 < 𝑑𝑚𝑖𝑛   ∀𝑖, 𝑗 ∈ ℳ, 𝑖 ≠ 𝑗 (1) 

 

In this article, we also assume a UAV 𝑘  can fly with 

arbitrarily speed 𝑣𝑘  and heading angle 𝜃𝑘  where 𝑣𝑘  and 𝜃𝑘 

are continuous values instead of discrete values. Our goal here 

is to find an approach to make UAVs able to avoid each other 

or obstacle automatically, and the approach we adopt is Deep 

Reinforcement Learning (DRL) 

 

B. Routes Optimization 

We consider a capacitated vehicle routing problem (CVRP) 

with both weight and volume constraints since UAVs have a 

limited payload and space to carry parcels. Instead of 

minimizing the traveling cost directly calculated with the 

traveled distance of vehicles in conventional CVRP, we aim to 

reduce the total energy cost since modern UAVs use batteries 

as power sources and the electricity consumption directly 

affects logistics costs. We define our energy cost function of 

UAV as follows, similar to [24]. 

 

𝐶𝑜𝑠𝑡𝐸𝑛𝑒𝑟𝑔𝑦  =  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ×  (1 +  𝑃𝑎𝑦𝑙𝑜𝑎𝑑) (2) 

 

With the definition of cost function (2), our goal is to find a 

solution that minimize the cost function. In this article, we 

apply genetic algorithm to solve the optimization problem. 

IV. DRL BASED UAV COLLISION AVOIDANCE 

We propose an approach for UAV collision avoidance using 

a state-of-the-art deep reinforcement learning algorithm 

called Soft Actor-Critic (SAC) [25]. Specifically, SAC is an off- 

policy actor-critic deep reinforcement learning algorithm 

based on the maximum entropy reinforcement learning 

framework. Unlike Deep Deterministic Policy Gradient (DDPG) 

[26] or Twin Delayed Deep Deterministic Policy Gradient (TD3) 

[27], SAC uses a stochastic policy with entropy regularization 

instead of a deterministic policy.  

 

A. State Space 

Since method proposed only consider local observation of 

the agent, the state representation would be represented in 

the local coordinate system of UAV. Consider a tagged UAV 

agent in Fig. 1, the 𝑥-axis is the current heading of the agent, 

𝑑𝑔𝑜𝑎𝑙  is the relative distance of the agent’s goal, 𝑑𝑜𝑏𝑠  is the 
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relative distance of between the detected obstacle UAV and 

the tagged agent, 𝜃𝑔𝑜𝑎𝑙  is the angle between the agent’s goal 

and the 𝑥 -axis, 𝜃𝑜𝑏𝑠  is the angle between the detected 

obstacle and the 𝑥-axis, 𝜓𝑜𝑏𝑠  is the heading of the obstacle 

UAV with respect to the x-axis. It is assumed that all UAVs fly 

toward their heading direction and all the angles and headings 

are within the range between −π and +π. 

 
Fig. 1. The local state representation of a UAV agent. 

 

Let  𝐬𝑡 be the current observed state of the tagged UAV at 

time 𝑡  where 𝑡 ∈ [0, ∞) . 𝐬𝑡  is a composition of agent 

information info𝑎𝑔𝑒𝑛𝑡  and two nearest obstacle information 

info𝑜𝑏𝑠1 and info𝑜𝑏𝑠2. 

 

𝐬𝑡 = [info𝑎𝑔𝑒𝑛𝑡 info𝑜𝑏𝑠1 info𝑜𝑏𝑠2] (3) 

 

where info𝑎𝑔𝑒𝑛𝑡 includes the information of the current agent 

speed 𝑣𝑎𝑔𝑒𝑛𝑡 , current heading angle 𝜓𝑎𝑔𝑒𝑛𝑡  with respect to 

the world coordinate system, relative goal distance dgoal, and 

𝜃𝑔𝑜𝑎𝑙   the angle between the agent’s goal and the 𝑥-axis. To 

keep state values in the same order of magnitude, each term 

in info𝑎𝑔𝑒𝑛𝑡 is divided by a constant denominator where 𝑣𝑚𝑎𝑥  

is the maximum velocity of all UAVs in the system and 𝑑scale is 

the predefined distance normalization factor. 

 

info𝑎𝑔𝑒𝑛𝑡 = [
𝑣𝑎𝑔𝑒𝑛𝑡

𝑣𝑚𝑎𝑥

𝜓𝑎𝑔𝑒𝑛𝑡

π
min (1,

𝑑𝑔𝑜𝑎𝑙

𝑑𝑠𝑐𝑎𝑙𝑒
)

𝜃𝑔𝑜𝑎𝑙

π
] (4) 

 

info𝑜𝑏𝑠   represents the information of the obstacle UAV, 

including relative distance 𝑑𝑜𝑏𝑠 , relative angle 𝜃𝑜𝑏𝑠  and 𝜓𝑜𝑏𝑠  

the heading of the obstacle UAV. Likewise, each term in info𝑜𝑏𝑠 

is divided by a constant denominator. 

 

infoobs = [
𝑑𝑜𝑏𝑠

𝑑𝑠𝑒𝑛𝑠𝑒

𝜃𝑜𝑏𝑠

π

𝜓𝑜𝑏𝑠

π
] (5) 

 

It is worth noticing that  info𝑜𝑏𝑠 = [1 1 0]  if the tagged 

UAV cannot detect any UAV at the time. 

 

B. Action Space 

We model the quadrotor UAVs as a unicycle model as in Fig. 

2. The velocity of a UAV moving in the 𝑥-axis is given by  𝑣𝑥 =

𝑣 cos 𝜃 and the velocity of a UAV moving in the y-axis is given 

by 𝑣𝑦 = 𝑣 sin 𝜃 . Let 𝐚𝑡  denotes the action space, 𝑣 ∈

[0, 𝑣𝑚𝑎𝑥] be the UAV flying velocity and 𝜃 ∈ [−π, π]  be the 

heading angle of the UAV with respect to the world coordinate 

system.  

 

𝐚𝑡 = [
2𝑣

𝑣𝑚𝑎𝑥

− 1
𝜃

π
] (6) 

 
Fig. 2. Unicycle model of a quadrotor UAV. 

 

Since the last layer of the actor network is activated by a 

hyperbolic tangent function, we resize and normalized the 

action space in order to fully utilize the numeric range of the 

action space. 

 

C. Reward Function Design 

We adopt the design of reward function in [11] and added 

an addition penalty value which is described in the next 

paragraph, and the algorithm is shown in Algorithm 1. 

  
Let  r𝑡 denotes the reward agent receives at time 𝑡 ∈ [0, ∞) 

and ℛ: 𝒮 → r𝑡  be the reward function where 𝒮  is the global 

state of the environment. Let 𝑑𝑐𝑜𝑙𝑙𝑖   be the collision threshold 

for reward calculation and 𝑑𝑜𝑏𝑠,𝑡+1  be the relative obstacle 

distance of the new state 𝐬𝑡+1. If 𝑑𝑜𝑏𝑠,𝑡+1 < 𝑑𝑐𝑜𝑙𝑙𝑖 , the agent is 

punished by a reward value r𝑡 = −2 to help it learn how to 

avoid collisions. Otherwise, r𝑡  is initialized with a value 

proportional to the relative velocity between the agent and its 

goal. The reward is positive as the agent moves towards its 

goal and negative as the agent moves away from its goal. 
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The initial reward value is also scaled by a factor to make the 

reward value larger as the agent approaches the target even if 

the speed of the agent remains unchanged. |𝜃𝑔𝑜𝑎𝑙,𝑡+1| is then 

subtracted from r𝑡  after multiplied with a small factor. This 

helps the agent learns to navigate to the goal by applying 

punishments when it is not flying in the direction of the goal. 

Finally, an addition value inversely proportional to the initial 

goal distance 𝑑𝑖𝑛𝑖𝑡  is subtract from r𝑡 to encourage the agent 

to learn to reach its target as soon as possible. 

 

D. Soft Actor Critic Framework in UAV Collision Avoidance 

Conventional reinforcement learning aims to learn a policy 

𝜋(𝐚𝑡 , 𝐬𝑡)  that maximize the expected sum of rewards 

∑ 𝔼(𝐬𝑡,𝐚𝑡)~𝜌𝜋
[𝑟(𝐬𝑡 , 𝐚𝑡)]𝑡  where 𝜌𝜋  denotes the state action 

distribution of policy 𝜋 and 𝔼 denotes the expectation value 

function. However, SAC generalizes the standard objective by 

augmenting it with an entropy term ℋ(𝑃) =

𝔼𝑥∼𝑃[−log𝑃(𝑥)]where 𝑥 is a random variable with probability 

density function 𝑃  with respect to 𝑥 , such that the optimal 

policy 𝜋∗  additionally aims to maximize its entropy at each 

visited state [28]: 

 

𝜋∗ = arg max
𝜋

∑ 𝔼(𝐬𝑡,𝐚𝑡)∼𝜌𝜋
[𝑟(𝐬𝑡, 𝐚𝑡) + 𝛼ℋ(𝜋(∙ |𝐬𝑡))]

𝑡
 (7) 

 

where 𝛼 > 0 is the temperature parameter that determines 

the relative importance of the entropy term versus the reward 

𝑟(𝐬𝑡 , 𝐚𝑡) . The concept of the implemented entropy term 

ℋ(𝜋(∙ |𝐬𝑡)) represents the randomness of the outputs of the 

stochastic policy 𝜋  with given 𝐬𝑡 . The extra entropy term 

incentivizes the policy to explore more widely, improving its 

robustness against perturbations [29].  

 
Fig. 3. An illustration of a Soft Actor Critic framework. 

 

The SAC deep reinforcement learning algorithm framework 

is shown in Fig. 3. It is composed of five neural networks: A 

Gaussian policy network  𝜋𝜙   with parameters ϕ, two Q-

networks 𝑄𝜃1
 and 𝑄𝜃2

 with parameters  𝜃1  and  𝜃2 , and two 

target Q-networks  𝑄𝜃̅1
 and 𝑄𝜃̅2

 with parameters 𝜃̅1 and 𝜃̅2. In 

order to train the deep reinforcement learning model, we 

must first compute the loss function of each network in the 

SAC framework. As suggested in [28], we learn the Q-network 

parameters as a regression problem by minimizing the 

following loss function: 

 

𝐽𝑄(𝜃𝑖) = 𝔼(𝐬𝑡,𝐚𝑡,𝐬𝑡+1)~𝒟 [(𝑄𝜃𝑖
(𝐬𝑡, 𝐚𝑡) − (𝑟(𝐬𝑡, 𝐚𝑡) + 𝛾𝑉𝜃̅1,𝜃̅2

(𝐬𝑡+1)))
2

] (8) 

 

using mini-batches from the replay buffer 𝒟 , where the 

value function 𝑉𝜃̅1,𝜃̅2
 is implicitly defined through the Q-

networks and the policy as: 

 

𝑉𝜃̅1,𝜃̅2
(𝐬𝑡) = 𝔼𝐚𝑡∼𝜋 [ min

𝑖∈{1,2}
𝑄𝜃̅𝑖

(𝐬𝑡 , 𝐚𝑡) − 𝛼 log 𝜋 (𝐚𝑡|𝐬𝑡)] (9) 

 

Then, we improve the Gaussian policy in a similar factor by 

minimizing: 

 

𝐽𝜋(𝜙) = 𝔼𝐬𝑡~𝒟,𝐚𝑡~𝜋 [𝛼 log 𝜋 (𝐚𝑡|𝐬𝑡) − min
𝑖∈{1,2}

𝑄𝜃𝑖
(𝐬𝑡, 𝐚𝑡)] (10) 

 

using the reparameterization trick. We re-parameterize the 
policy function using a neural network transformation of 𝐚𝑡 =
𝑓𝜙(𝜀𝑡|𝐬𝑡)  where 𝜀𝑡  is an input noise vector sampled from a 

normal Gaussian distribution as suggested in [28]. 
Furthermore in [28], the author proposed a way to automate 
the process of choosing the optimal temperature 𝛼. Instead of 
requiring the user to set the temperature manually, they 
automate this process by formulating a different maximum 
entropy reinforcement learning objective: 

 

𝐽(𝛼) = 𝔼𝐬𝑡~𝒟,𝐚𝑡~𝜋𝜙
[−𝛼 log 𝜋𝜙 (𝐚𝑡|𝐬𝑡) − 𝛼ℋ̅] (11) 

 

where ℋ̅ denote the target entropy and is set equal to the 

dimension of the action space. As in [28] we select target 

entropy as the dimension of the action space, letting ℋ̅ =

−dim(𝐚𝑡) = −2. Finally, the target Q-networks 𝑄𝜃̅𝑖
, 𝑖 ∈ {1,2} 

are updated with a delay factor 𝜏 with respect to the original 

Q-networks as shown in (12). 

 

𝜃̅𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃̅𝑖 , 𝑖 ∈ {1,2} (12) 
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While training, all objectives in Equations (8), (10), and (11) 

are all optimized simultaneously. Algorithm 2 summarizes the 

full training procedure, where ∇̂denotes stochastic gradients 

and 𝜆 denotes the learning rate. The parameters are first 

initialized. During environment steps of each iteration, the 

algorithm will sample action, 𝐚𝑡, from action space, 𝜋φ(𝐚𝑡|𝐬𝑡), 

and transition state, 𝐬𝑠+1 , from the environment regarding 

current environment state, 𝐬𝑡 and action taken, 𝐚𝑡. These data 

with the reward 𝒓𝑡, will then be stored in the replay buffer, 𝒟 

for each agent. The parameters then will be optimized using 

gradient descend on the basis of equation (8), (10), (11) and 

(12). 

 

E. Training Environment 

To increase training efficiency, instead of using a physics 

engine, we create a custom OpenAI Gym [30] environment for 

developing and testing learning agents written in Python. In 

each episode, the environment is initialized by generating M 

agents with randomly distributed depots 𝒟 = {𝐷1, 𝐷2, … , 𝐷𝑚}  

and goals 𝒢 = {𝐺1, 𝐺2, … , 𝐺𝑚} , where  ∀𝑖, 𝑗 ∈ ℳ  and i ≠ j 

𝐺𝑖 ≠ 𝐺𝑗 . At each time slot 𝑡 the environment takes 𝑚 sets of 

actions  𝐚𝑡 and returns 𝑚 sets of new states  𝐬𝑡+1 and rewards 

r𝑡  with respect to each agent 𝑚. The goal of the environment 

is to let the model learn a single policy over all agents while all 

agents can successfully reach their targets and avoid collisions. 

Each episode of training is terminated either when the agent 

reaches its goal or when the agent flies out of the boundary. 

Each episode will end only when all agents have reached their 

goals or time has run out. 

V. ROUTE OPTIMIZATION IN UAV PARCEL DELIVERY 
TASKS 

A. Modified CVRP 

We discuss the solution to the route optimization in UAV 

delivery system in this section. we will formulate the modified 

CVRP (mCVRP) with the proposed energy cost function in (2), 

which is consider an extension of the conventional CVRP 

problem. 

 
Fig. 4. Example of a solution of the mCVRP. 

 

Consider an environment with a total number of 𝑛 nodes 

and 𝑛 − 1 customers as illustrated in Fig. 4., we denote the 

location of each node as  𝐿𝑖  where 𝑖 ∈ {1,2, … , 𝑛} . 𝐿0  is 

defined as the location of the depot while 𝐿𝑖,𝑖≠0 is the location 

of the customers, the distance between node 𝑖 and node 𝑗 is 

represented by 𝑑𝑖,𝑗  . It is assumed that each UAV is able to 

carry at most 𝐶𝑝 parcels at once and have a payload limit of 

𝐶𝑤. The solution space of the proposed mCVRP is composed of 

three variables: 𝑥𝑖,𝑗, 𝑤𝑖,𝑗  and 𝑝𝑖,𝑗, 𝑥𝑖,𝑗, is a binary number that 

is equal to 1 if a UAV goes from node 𝑖 to node 𝑗. 𝑤𝑖,𝑗  is the 

total weight of the parcels that the UAV is carrying when going 

from node 𝑖 to node 𝑗. 𝑝𝑖,𝑗 is the number of parcels that a UAV 

is carrying when flying from node 𝑖  to node 𝑗 . With the 

presented parameters and the variables, the mathematical 

formulation of mCVRP is the following: 

Objective: 

𝑚𝑖𝑛 ∑ ∑ 𝑥𝑖,𝑗𝑑𝑖,𝑗(1 + 𝑤𝑖,𝑗)

𝑛

𝑗=1

𝑛

𝑖=1

 (13) 

 

Subject to: 

∑ 𝑥𝑖,𝑗

𝑛

𝑗=1

= 1    ∀𝑖 = {2, … , 𝑛} (14) 

∑ 𝑥𝑗,𝑖

𝑛

𝑗=1

= 1    ∀𝑖 = {2, … , 𝑛} (15) 

∑(𝑤𝑗,𝑖 − 𝑤𝑖,𝑗)

𝑛

𝑗=1

= 𝐷𝑖     ∀𝑖 = {2, … , 𝑛} (16) 

∑(𝑝𝑗,𝑖 − 𝑝𝑖,𝑗)

𝑛

𝑗=1

= 1    ∀𝑖 = {2, … , 𝑛} 
(17) 

0 ≤ 𝑤𝑖,𝑗 ≤ 𝐶𝑤𝑥𝑖,𝑗    ∀𝑖, 𝑗 = {1, … , 𝑛} (18) 

0 ≤ 𝑝𝑖,𝑗 ≤ 𝐶𝑝𝑥𝑖,𝑗     ∀𝑖, 𝑗 = {1, … , 𝑛} (19) 

𝑥𝑖,𝑖 = 0    ∀𝑖 = {1, … , 𝑛} (20) 

𝑥𝑖,𝑗 ∈ {0,1}    ∀𝑖, 𝑗 = {1, … , 𝑛} (21) 

 

The objective function (13) aims to minimize the total travel 

energy cost of all UAVs. Equation (14) and (15) ensure that only 

one UAV enters or leaves the node 𝑖  except for the depot. 

Equation (16) constrains the variable 𝑤𝑖,𝑗  according to the 
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customer demand 𝐷𝑖 . Equation (17) limits the variable 𝑝𝑗,𝑖  

since each customer only demands one package. Equation (18) 

and (19) are the key constraints that limit the maximum weight 

and the number of payloads a UAV can carry at each route. 

Equation (20) makes sure no nodes will be skipped. Equation 

(21) limits the forces 𝑥𝑖,𝑗  become a Boolean value.  

 

B. Adopting Genetic Algorithm 

We now adopt genetic algorithm to solve the proposed non-

linear programming problem. We would state the approach 

encoding a set of solutions into chromosome and the design of 

fitness function in order to implement genetic algorithm in this 

section. The solution to an mCVRP is sets as: {{0 → 2 → 3 →

5 → 0}, {0 → 7 → 6 → 0}, {0 → 1 → 4 → 0}} As shown in Fig. 

4. Each element in the sets indicates the ID of the customer 

and ID 0 is the depot. We can directly encode the sequence of 

the solution set by eliminating the depots as Fig. 5. Repeat 

pattern is not allowed since each customer only receives one 

parcel in each mission. Each segment of the chromosome is 

determined by the summation of demands, once ∑ 𝐷𝑖  is 

greater than the UAV payload limit 𝐶𝑤, another UAV is needed 

to deliver the extra parcel. The length of the chromosome is a 

constant equal to 𝑛 − 1 . It is worth noticing that different 

combination with identical fitness values is possible. For 

example, Fig. 5 shows 5 redundant results having the exact 

routing result. 

 
Fig. 5. Example of chromosome encoding. 

We establish a function to evaluate the fitness of a chro- 

mosome, which is set to be the reciprocal of total energy. The 

energy could be calculated via (2). We implement a 3-way 

tournament selection as our selection strategy, selecting 3 

individuals randomly and running a tournament among them. 

Only the fittest candidate is chosen and passed to perform 

crossover and mutation processes. The details of crossover 

and mutation operations are described below. The elitism 

strategy is also adopted to ensure that the fittest solution is 

always retained without undergoing crossover or mutation 

operations.  

1) Crossover Operation: We now adopt Order Crossover 

genetic algorithm to solve the proposed non-linear 

programming problem. To implement Order Crossover (OX), 

we need 2 chromosomes, denoted as parent 1 and parent 2, in 

advance. The steps are as follows: 

Step (1) Select a random segment from parent 1. 

Step (2) Place selected segment at the corresponding 

position of a new offspring. 

Step (3) Remove the element existing in the selected 

segment from parent 2. 

Step (4) Place the rest of part of parent 2 at the unfixed 

position of offspring 1 from left to right according to the 

order of the sequence. 

Step (5) Go back to Step (1) and swap parents to generate 

another offspring. 

2) Mutation Operation: The mutation operation is per- 

formed by arbitrarily selecting a segment of random length in 

a chromosome and flipping the order of the selected segment. 

This kind of mutation operation will not break the integrity of 

the chromosome. 

VI. TEST RESULTS 

A. DRL-based Method Training Results 

The adopted method is trained in a square map with a width 

of 50 meters and a total of 5 agents. The maximum velocity 

𝑉𝑚𝑎𝑥  of each agent is 10m/s and the maximum acceleration is 

5m/s2. The sensing range 𝑑𝑠𝑒𝑛𝑠𝑒  the collider radius  𝑑𝑐𝑜𝑙𝑙𝑖  of 

each UAV is set to 15m and 1m respectively. The agent 

interacts with the environment 50 times per second, i.e., the 

agent takes 50 actions in a second. The parameters of the SAC 

method are shown in Table I. 

 

In Fig. 6, we illustrate the learning curve with respect to the 

episode score of the adopted SAC method. Since the goal of 

the agent is randomly generated and the total reward is 

positively correlated with the initial target distance, the score 

oscillates even if the agent successfully reaches the target. The 

huge spikes in the unsmoothed curve result from agents failing 

to avoid collisions and getting tangled with others.  

TABLE I. SOFT ACTOR CRITIC HYPERPARAMETERS 

Parameters Methods/Values 

Optimizer Adam (Kingma, 
Jimmy Ba (2015)) 

Learning Rate   3 \times 10^(-4) 

Reward Discount 0.99 

Replay Buffer Size  10^6  

Number of hidden layers 2 

Number of hidden units per layer 256 

Number of samples per minibatch 256 

Target Entropy -2 

Activation Function ReLU 

Target Smoothing Coefficient 0.005 

Temperature Coefficient 0.5 

http://www.ausmt.org/


ORIGINAL ARTICLE  UAV parcel Delivery System with Deep Reinforcement Learning Based Collision Avoidance and Route Optimization 

www.ausmt.org  8                                                                                               auSMT Vol. 14 No.1 (2024) 

Copyright © 2024 International Journal of Automation and Smart Technology 

 
Fig. 6. Training curve of the adopted reinforcement learning 

algorithm. 

 

In Figs. 7 and 8, we compare the training curves of different 

deep reinforcement learning methods with respect to the 

success rate (𝑆𝑅) and the collision rate (𝐶𝑅). 𝑆𝑅 is defined as 

the number of agents that successfully reaches their target 

divided by the number of total agents in the simulation. 𝐶𝑅 is 

defined as the number of agents collides with other agents 

divided by the number of total agents in the environment. The 

result is produced by running 10 episodes of evaluation every 

10 episodes while training. The training result shows that the 

success rate of the adopted SAC method outperforms other 

famous deep reinforcement methods such as DDPG and TD3. 

Not only does the adopted method converge faster, but it also 

performs relatively stable compared to others. Although DDPG 

seems to learn faster at the beginning, it fails to learn the 

collision avoidance policy, causing a high collision rate. As for 

TD3, the result shows that it may be able to learn a good policy 

concerning the collision rate, but the success rate still does not 

converge after 1500 episodes of training. In contrast, SAC 

converges faster and tends to have a more stable performance 

after 1000 episodes of training. Compared to the Q-learning 

method proposed in [11], the SAC method provides not only a 

higher success rate but also continuous UAV motion control 

instead of discrete UAV heading control. The overall success 

rate of the validation result is also higher than the Q-learning 

method with the same number of agents. 

 
Fig. 7. Success rate with respect to trained episodes of 

different deep reinforcement learning algorithms including 

SAC (blue), DDPG (green) and TD3 (orange). 

 
Fig. 8. Collision rate with respect to trained episodes of 

different deep reinforcement learning algorithms including 

SAC (blue), DDPG (green) and TD3 (orange). 

To further examine the performance of the trained SAC 

method, we tested the learned policy under environments 

with different numbers of total agents. Each number of total 

agents is tested with 100 random episodes. In Fig. 9, it shows 

that as the total agent number increases, the success rate 

starts descending, and the collision rate starts ascending. As 

the environment gets more crowded, the hard limitation of the 

input state that only allows the agent to perceive at most two 

nearby obstacles at once becomes more significant. Note that 

the maximum step of each validation episode is 1500 steps. It 

is considered failed if an agent is unable to reach its goal within 

the step limit. The result in Fig. 9 also illustrates the 

extensibility of the adopted SAC method. The trained policy 

still has a collision rate below 1 percent and a success rate 

above 99.9 percent when the total agent number is 12, 

although the model is trained in an environment with only 5 

agents.  

 
Fig. 9. Success rate(blue) and collision rate(orange) with 

respect to different numbers of agents in the environment. 

Light color indicates raw data, while dark color indicates 

smoothed data. 

Finally, we illustrate the result of implementing the 

proposed DRL-based UAV collision avoidance method with the 

trained model in a realistic simulation environment using ROS 

and Gazebo. The maximum velocity 𝑉𝑚𝑎𝑥  of each UAV agent is 

10m/s and the maximum acceleration is5m/s2 . The sensing 

http://www.ausmt.org/


Chun-Yuan Chi, De-Fu Chen, Hoang-Phuong Doan, and Chung-Hsien Kuo 

www.ausmt.org  9                                                                                               auSMT Vol. 14 No.1 (2024) 

Copyright © 2024 International Journal of Automation and Smart Technology 

 

range d_sense of the UAVs is set to 15m. The trajectory of four 

UAV agents trying to avoid collisions between each other using 

the proposed method while swapping their positions is shown 

in Fig. 10. The result shows that even if the proposed deep 

reinforcement learning based model is trained in a simplified 

simulated environment, it can still be adopted in a realistic 

physics engine with sensor noises and control delays. 

 
Fig. 10. Trajectory of 4 UAVs trying to avoid each other. 

 

B. Test Results of the Genetic Algorithm Based Route 

Optimization in Simulated Parcel Delivery System 

The genetic algorithm converges after about 1500 

generations with the parameters shown in Table II. It took 8.3 

seconds to evolve 3000 generations on a laptop with Intel® 

Core™ i7-12650H CPU. The optimized result leads the UAV to 

first deliver the heaviest and nearest parcel in order to reduce 

its overall energy consumption. The routing result of the 

proposed genetic algorithm in the scenario of 20 customers is 

shown in Fig. 11. Each blue dot in the figure represents a 

customer and the number beside it denotes the demand  𝐷𝑖   

and the center red dot represents the depot. 

 

 
Fig. 11. Demonstration of the proposed genetic algorithm with 

20 customers.  

The convergence curve of a total of 100 customers with 

different population sizes is shown in Fig. 12. We can notice 

that the convergence rate is higher as the population size gets 

larger; however, the computation time also rises when the 

population size is increased. 

 
Fig. 12. Convergence curve of 100 customers concerning 

different population sizes. Blue stands for 10, orange for 30, 

and green for 50. 

To evaluate the performance of the proposed genetic 

algorithm method, we compared the total energy cost 

produced by the genetic algorithm with the result using first 

come first serve scheduling (FCFS). Fig. 13 shows the 

improvement percentage when utilizing the proposed genetic 

algorithm with respect to FCFS in 100 missions. Each mission 

contains 20 customers. The experiment results show that the 

average improvement percentage is 29.41%. 

 

TABLE. 2 GENETIC ALGORITHM PARAMETERS 

Parameters           Values 

Map Width 1000m 

Number of Customers 20 

Number of Population 30 

Weight Capacity 1.0kh 

Maximum number of carried 
parcels for a UAV 

3 

Mutation Rate 0.6 
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Fig. 13. Improvement our genetic algorithm in comparison to 

traditional FCFS method. We recorded a 29.41% improvement 

on average with respect to FCFS method. 

 

C. Adopting the Proposed Methods in a Simulated Parcel 

Delivery System 

   We now carry out simulation of the parcel delivery system. 

We first create a 3-D model of the campus of National Taiwan 

University (NTU) for the simulation, the model is shown in Fig. 

14.  

 

 
Fig. 14. 3-D model of the NTU campus in Blender 

 

    In the simulation, 20 orders with different parcel weight and 

destination are generated. Then, 10 UAVs will depart the 

central depot after being loaded, follow the route generated 

by our genetic algorithm to deliver the parcel to the right 

position while avoiding collision with each other, and finally go 

back to the original depot. Each UAV in the simulation can 

carry 1 kg of payload and 3 parcels at the maximum, flying at a 

height of h = 100 meters. The scene of UAVs taking off from 

the depot is shown in Fig. 15, and the route generated by our 

algorithm is shown in Fig. 16. In the end, it took 5 minutes and 

8 seconds for 10 UAVs to deliver 20 parcels to customers at 

different locations. We now showed the feasibility of applying 

the proposed UAV collision avoidance method and the genetic 

algorithm based on route optimization in parcel delivery tasks 

with the result gained from the simulation. 

 

 
Fig. 15. Illustration of the UAVs taking off and start delivering. 

 
Fig. 16. Routing result of the simulation 

VI. CONCLUSION AND FUTURE WORKS 

In recent years, more logistics services are making use of the 

UAV parcel delivery system. However, implementing such a 

system involves solving some problems such as UAV collision 

avoidance and route optimization. Therefore, in this thesis, we 

proposed a UAV collision avoidance solution by adopting a 

state-of-the-art deep reinforcement learning model. 

Moreover, the proposed method works in a decentralized 

manner, it does not require successive communication with 

the centralized server, and it takes actions according to the 

local observation of an agent. In addition, to further reduce the 

cost of the logistic, we proposed a genetic algorithm to 

generate optimized delivery routes. Instead of minimizing the 

total distance, we aim to minimize the total energy cost in UAV 

delivery tasks. We modified the conventional CVRP with 

additional constraint and solve the optimization problem by 

using genetic algorithm along with our custom fitness function 

to obtain optimized routes in UAV delivery tasks. Finally, we 

validate the proposed method using physics engines and SITL 

to evaluate the feasibility of our proposed method. The result 

shows that our proposed UAV collision avoidance method is 

able to work in a realistic simulation environment. In future 

research, we aim to validate our UAV collision method on a 

UAV in a real-world environment. Also, we would like to 

compare the computational efficiency of the proposed genetic 

algorithm with some other modern non-linear programming 

solvers. 
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