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Abstract: The identification of metal surface defects is essential for many sectors, including aerospace and automotive, 

in the production of quality products. Traditional approaches are time-consuming and error-prone and, hence, an 

automated, accurate fault localisation solution in robotic automation is necessary. This research aims to enhance the 

defect detection process by integrating SH-SAM with GLCM for enhanced precision and robustness in robotic 

automation. We therefore aim at developing a whole system that integrates texture with spectral analysis for accurate 

identification of defects. The proposed method integrates Supervised Hyperspectral Anomaly Detection (SH-SAM) with 

a grey-level co-occurrence Matrix (GLCM) to analyse spectral anomalies and texture patterns on metal surfaces. This 

integration enhances the discovery of flaws by robotic automation. The approach that combines SH-SAM and GLCM 

performed better compared to any of the methods individually on F1 score (88.5%), accuracy (92%), and precision 

(89%). It also outperformed all the others in defect localization as RME was decreased to 9.3%. The integration of SH-

SAM and GLCM offers a highly effective solution for the localisation of metal surface defects with improved accuracy 

and reduced errors. This method shows great potential for real-time robotic automation in metal surface inspection 

applications. 

Keywords: hyperspectral imaging, texture analysis, robotic automation, metal surface flaws, SH-SAM, GLCM and 

localization of defect. 

 

Introduction 

     The use of hyperspectral imaging with texture 

analysis techniques has been able to integrate into a 

possible way to improve location of defects. With this, 

hyperspectral imaging would allow the precise spectrum 

analysis of materials, especially with very sophisticated 

algorithms such as SH-SAM or Supervised Hyperspectral 

Anomaly Detection, which identifies spectral anomalies 

through computing the pixel divergence from a typical 

material spectrum. This technique might identify subtle 
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changes on the metal surface that would otherwise be 

missed by conventional examination techniques. However, 

surface texture and spatial relationships - both necessary 

for accurate fault identification are insufficiently 

demonstrated by spectral data alone. 

This is solved using the Grey Level Co-Occurrence 

Matrix (GLCM) approach. GLCM analyzes the spatial 

correlations between pixel intensities in an image to 

provide useful texture properties such as contrast, energy, 

and homogeneity. The Grey Level Co-Occurrence Matrix 

(GLCM) evaluates an image’s texture by analysing spatial 

relationships between pixel intensities. It constructs a 

matrix that represents how often pairs of pixels with 

specific intensity values occur at a defined spatial distance 

and orientation. From this matrix, statistical features such 

as contrast, correlation, energy, and homogeneity are 

extracted to quantify texture characteristics, enabling 

precise defect classification in surface analysis. Some of 

the textural characteristics are significant for 

distinguishing between surface flaws and normal surface 

conditions. Bazrafkan and Rutner [1] proposed the 

combinations of vibroacoustic modulation (VAM) with 

nonlinear interactions of major Lamb wave modes for 

providing a novel approach for better fault localization in 

robotics automation. The tested and validated method 

uses short-time Fourier transform (STFT) for damage 

imaging along with piezoelectric sensors and high-

frequency Lamb waves. This baseline-free method uses 

fewer sensors for offering great localisation accuracy. 

Sferrazza [2] investigates the analysis of use-wear 

traces on archaeological objects by the Gray-Level Co-

occurrence Matrix. This 2D image analysis tool is fast, 

economical, and quantitative, thereby an alternative to 

conventional qualitative methodologies. The study 

successfully identified and quantified four types of use-

wear traces on flint samples by GLCM and a Support 

Vector Machine algorithm. The texture characteristic 

obtained through GLCM may be merged with the SH-SAM 

spectrum analysis. This brings about a comprehensive 

understanding of the metal surface with more precise 

fault location. The GLCM analyses pixel intensity 

relationships to quantify texture features like contrast and 

homogeneity, helping identify surface imperfections. It 

complements SH-SAM by providing textural context for 

accurate defect classification. Together, they improve 

defect detection and localization in surface analysis. 

This is a method that combines the benefits of SH-

SAM and GLCM for flaw detection and localization. Using 

the detection of spectral anomalies and the capture of 

texture patterns, SH-SAM and GLCM present an effective 

technique in identifying many defects observed on metal 

surfaces. Xie et al. [3] explored the use of Gray-Level Co-

Occurrence Matrix (GLCM), and Discrete Wavelet 

Transform (DWT) for the detection of textural features of 

squamous epithelial cells from laryngeal carcinoma. The 

researchers found that the GLCM and DWT characteristics 

of malignant and non-cancerous tissues are vastly 

different. The SVM and random forests models have also 

exhibited a promising classification accuracy, and 

therefore AI-based diagnostic sensors could be realized. 

This method ensures good accuracy and precision 

of fault localization by being capable of identifying small 

spectral changes as well as anomalies in spatial texture. 

The proposed approach combines GLCM with SH-SAM to 

improve robotic inspection tasks' accuracy and efficiency. 

While GLCM examines texture patterns for accurate 

defect classification and localization, SH-SAM quickly finds 

spectral anomalies, lowering false positives and 

computational cost. In industrial applications, these 

enhancements result in improved quality control, 

decreased downtime, and fewer inspection errors. The 

system's dependability is demonstrated by its 92% 

accuracy, 89% precision, and 9.3% reduced RME, which 

make it ideal for automated inspections in the automotive 

and aerospace sectors. This is particularly beneficial for 

real-time industrial inspection of metal surfaces, and it is 

well suited to automated robotic systems. Konovalenko et 

al. [4] have experimented with several U-Net-based CNN 

architectures to detect defects in the metal surface. After 

comparing models like ResNet, SEResNet, DenseNet, and 

MobileNet, they found that the best results were obtained 

using ResNet152 with a stochastic gradient descent 

optimiser. With a Dice similarity coefficient of 0.9304 and 

an IoU of 0.9122, scratch abrasion detection was reported 

to have the highest recognition accuracy, thus reporting 

promising results in visual inspection and image 

segmentation for metallurgy. 

The Key objectives are as follows. 

 To create a better metal surface defect 

localization technique that uses GLCM and SH-

SAM to increase fault detection accuracy. 

 To integrate texture feature analysis (GLCM) with 

spectral anomaly detection (SH-SAM) for 

thorough defect localisation on metal surfaces. 

 This study aims to assess and contrast the 

suggested approach with current methods 

regarding error metrics, recall, accuracy, and 

precision. 

 To use the suggested approach for real-time 

metal surface inspection in robot automation. 

Although current approaches concentrate on 

textural features or spectral analysis, few integrated 

strategies combine the two methodologies for localising 

metal surface defects. The research gap for complete and 

real-time robotic automation solutions is improving 

defect detection accuracy by efficiently integrating SH-
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SAM and GLCM techniques. The system continuously 

monitors performance and adjusts thresholds to maintain 

accuracy in defect detection. It learns from errors, 

operator feedback, and new defect data to improve over 

time. Real-time alerts with confidence scores help 

operators verify and refine detection results. Wu et al. [5] 

present a two-stage convolutional neural network (CNN) 

for metal surface fracture detection and segmentation. 

While the second step learns the crack context for precise 

segmentation, the first level finds and crops possible 

fissures. Stereo matching achieves sub-1mm accuracy in 

3D crack localization, a 94% Dice score, and a 96.3% 

detection precision by mapping 2D crack pixels to 3D 

coordinates. 

Literature Survey 

     Wu et al. [6] investigated the evolution of meso-

damage in coal under uniaxial compression using 

industrial CT scanning and the Gray Level Co-Occurrence 

Matrix (GLCM) hypothesis. Four statistical variables were 

extracted from CT images: contrast, energy, correlation, 

and homogeneity. They found that as fractures developed, 

contrast first reduced and subsequently increased. The 

patterns for energy, correlation, and homogeneity were in 

opposition to each other. The Boltzmann function 

explained the evolution of the features, which had a 

Gaussian distribution. The study emphasised how coal's 

failure site and meso-damage during deformation phases 

are dynamic. 

Sitaraman and Khalid [7] proposed a hybrid system 

for robotic automation. It integrates AutoNav with LIDAR-

based SLAM and a DenseNet architecture incorporating a 

Leaky ReLU activation function. This enables autonomous 

navigation, obstacle detection, and adaptive motion 

planning, enhancing efficiency and accuracy in dynamic 

environments. The technique addresses path planning by 

merging sensor fusion and deep learning. 

Hao et al. [8] suggest a technique for identifying 

breast cancer histopathology images that combine Gray 

Level Co-Occurrence Matrix (GLCM) information with 

deep semantic features. Convolutional layer features from 

the last dense block are combined with GLCM features 

using the pre-trained DenseNet201 model. Support 

Vector Machines (SVM) are utilised for categorisation. 

Results from experiments on the Break He dataset 

demonstrate that the method performs competitively 

against state-of-the-art techniques and outperforms 

seven baseline models, attaining high image-level and 

patient-level recognition accuracy over a range of 

magnifications. 

Poovendran [9] explains how AI-driven analytics 

enhances advanced case investigation through the 

analysis of complex data sets. The proposed system, using 

machine learning and automation, makes evidence 

gathering, risk assessment, and suspect profiling more 

streamlined. This reduces investigative time, enhances 

accuracy, and ensures data integrity, transforming law 

enforcement. Novel predictive algorithms from the 

system amplify detection rates and revolutionize 

evidence-based strategies. 

Gudivaka [10] proposed the Principal Component 

Analysis (PCA), Least Absolute Shrinkage and Selection 

Operator (LASSO), and Elaborative Stepwise Stacked 

Artificial Neural Network (ESSANN), this study investigates 

improvements in IoT and robotic process automation 

(RPA). With 95% accuracy, 92% precision, and 90% recall, 

the method enhances data pre-processing, feature 

selection, and predictive modeling. An ablation study 

demonstrates scalability and automation accuracy in 

managing complex data and processes, confirming the 

synergy of PCA, LASSO, and ESSANN. This approach shows 

great promise for developing IoT and RPA systems. 

Himabindu and Thinagaran [11] outline a holistic 

framework for harnessing AI and data analytics to 

transform business intelligence. Real-time data processing, 

predictive modeling, and machine learning algorithms 

help organizations gain actionable insights and optimize 

strategic decisions. This integrated approach enhances 

competitiveness, fosters operational agility, and catalyzes 

a data-driven culture across diverse industry sectors—

greatly improving profitability. 

Using the Gaussian Mixture Model (GMM) and the 

Grey Level Co-Occurrence Matrix (GLCM) characteristics, 

Wang and Sun [12] provide an image-based approach for 

classifying rock fabrics. This technique does not require a 

training dataset to classify photos with different 

sedimentary beddings and diverse pore architectures. The 

findings indicate that the more fabric kinds there are and 

the less contrast between the rock structures, the worse 

the classification performance. 

Swapna [13] illustrates a blockchain-based method 

for verification of integrity of data on multi-cloud storage 

systems using chain-code and HVT. By securely distributed 

data across multiple clouds and employing cryptography, 

the proposed approach establishes the authenticity, 

traceability, and evidence that cannot be tampered. The 

application of decentralized ledgers in contemporary 

systems of modern data storage further boosts trust, 

reliability, and efficiency by further establishing efficient 

compliance management and oversight. 

Gudivaka [10] discusses how RPA and AI combined 

can uplift corporate operations. RPA, which hitherto 

focused on repetitive tasks' automation, has become 

smart and efficient by the adoption of AI; this opens 

innovation in industries such as manufacturing, 
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healthcare, and finance. In this paper, cost savings, error 

reduction, and a systematic mapping study are presented. 

Despite all of the above advantages, problems such as lack 

of scientific application and evaluation methods still exist. 

This forms a foundation for further research. 

Deevi et al. [14] analyze how the digital economy 

leads to industrial restructuring and fosters sustainable 

entrepreneurship. By leveraging data analytics, e-

commerce platforms, innovation, and knowledge sharing, 

industries accelerate growth and competitiveness. 

According to the authors, digitalization fosters resource 

optimization, market expansion, and inclusive 

development and promotes long-term resilience and 

profitability and brand value in changing global markets. 

Basani [15] investigates the advancement of 

including sophisticated authentication as well as robotic 

process automation to further the last mile delivery for 

food services and ecommerce. A research study was 

proposed about the AI delivery system with the utilization 

of face recognition, biometric validation as well as the PIN 

numbers for effective as well as secure delivery services. 

It consisted of a co-operative user authentication module 

as well as a non-cooperative user identification module. 

The device was tested on the Turtlebot3. Results of 

autonomous delivery have reflected better accuracy, 

speed, and security; operational problems were 

addressed while costs are cut, and packages got delivered 

in a very secure way. 

Parthasarathy [16] presents how next-generation 

business intelligence takes advantage of AI and advanced 

analytics to help streamline processes, create higher 

efficiency, and make more data-driven decisions. The 

model focuses on real-time insights, predictive modeling, 

and improved interdepartmental collaboration. This is an 

integrated approach that reduces the cost of operation, 

enhances strategic planning, and fosters sustainable 

growth, creating competitive advantages in diverse 

business environments across industries. 

Gudivaka [17] The enhanced surface defect 

localization on metal using SH-SAM and GLCM with cloud 

computing and RPA in robotics automation maximizes the 

performance of robots while interacting with elderly and 

cognitively impaired people in social interactions. This 

achieves 97.3% accuracy through the deep learning 

models deployed in cloud-deployed configurations via the 

Semantic Localization System, Object Recognition Engine, 

and the Behaviour Recognition Engine. Improvement on 

independence and caregiver support based on real-time 

scheduling object detection, and user engagement in 

assistive robotics transforms technology despite 

connectivity issues. 

Mamidala [18] outlines a holistic approach to 

resilience that includes predictive analytics, collaborative 

frameworks, and agile leadership. The methodology 

focuses on risk assessment, resource optimization, and 

continuous feedback loops across various sectors, 

enabling data-driven planning. This way, organizations and 

communities can adapt rapidly to changing conditions, 

maintain stability, and respond effectively to crises, thus 

ultimately boosting overall sustainability. 

Surya and Muthukumaravel [19] developed an 

improved approach to detect breast cancer by using 

mammography images. The method of Surya and 

Muthukumaravel is a combination of EGLCM feature 

extraction technique, which includes texture, intensity, 

and form; and CLAHE, which is contrast-limited adaptive 

histogram equalization for preprocessing. KNN 

classification, on the MIAS database, was more efficient 

than previously developed methods such as LBP and 

GLRLM with a 92% accuracy rate, 90% specificity, and 84% 

sensitivity. 

Sareddy [20] discusses the transformative approach 

of recruitment by combining AI-driven analytics with 

blockchain-based verifications. This integration speeds up 

talent sourcing, enhances accuracy in candidate screening, 

and safeguards critical data. By streamlining workflows 

and making them more transparent through smart 

contracts, organizations save time and resources while 

building a robust, trust-based hiring ecosystem, thereby 

driving competitive advantages in the job market. 

Pastor et al. [21] explore the influence of electronic 

defects, such as charged point defects, on charge 

recombination in photovoltaic materials in the study of 

the role of electronic flaws in metal oxide 

photo(electro)catalysts for solar energy conversion. 

Defects facilitate catalytic reactions and stabilize charge 

separation in photocatalysis. Furthermore, the paper 

compares the chemistry of oxide defects with that of 

novel photocatalysts such as metal halide perovskites and 

carbon nitrides. 

Chetlapalli [22] explores the ways in which pre-

trained language models, used with evolutionary 

algorithms, revolutionize software test generation. The 

method increases test coverage, decreases human 

oversight, and accelerates detection of complex defects. 

Experimental results point out the efficiency and 

robustness of generating test cases over different code 

bases that lead to higher quality and reliability in software 

developed in real-world environments. 

Tan et al. [23] focused on improving the metal 

surface defects localization for better quality production 

control. SH-SAM extracts spectral features like anomaly 

scores, pixel variability, and spectral correlations to detect 

material inconsistencies. GLCM captures textural features 

such as contrast, homogeneity, and energy to identify 

surface defects. Together, they enhance defect 
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localization with improved accuracy and fewer false 

positives. The work evaluated three picture segmentation 

approaches to distinguish patch and scratch-type flaws. It 

included threshold, edge, and clustering segmentation 

techniques. From the outcomes, edge-based 

segmentation is successful for scratch flaws and best for 

the patch-type defect with the Otsu's Binarization 

approach, which consequently enhanced the accurate 

detection rate in an automatic system. 

Bobba [24] demonstrates how cloud-based 

financial frameworks speed up sustainable growth in 

smart cities. They do so with real-time data analysis, AI-

driven budgeting, and scalable infrastructure, thus 

promoting resource efficiency and economic resilience for 

the right kind of sustainable urban development and 

financial sustainability. It promotes cooperation, which 

enables prosperity. 

Zhao et al. [25] review the special qualities and uses 

of eutectic gallium-indium (EGaIn), a liquid metal 

renowned for its fluidity, conductivity, stretchability, and 

self-healing capabilities. They investigate its applications 

in biomedical science, energy catalysis, flexible, and 

molecular electronics. The study also covers the 

difficulties and potential of EGaIn-based methods in 

several developing domains. 

 To mitigate the high failure rate of RPA projects, 

Herm et al. [26] propose a framework for successful RPA 

implementation. They carried out expert interviews to 

enhance a sequential model and analysed 35 real-world 

project reports based on a design science research 

methodology. Their adaptable framework, which is 

divided into three phases - initialisation, implementation, 

and scalability - guides RPA project management in 

different organisational contexts. 

To address the high failure rate of robotic process 

automation (RPA) projects, Herm et al. [27] offer a 

framework for successful RPA implementation. They 

conducted expert interviews to improve a sequential 

model and examined 35 real-world project reports using a 

design science research methodology. RPA project 

management in various organisational contexts is guided 

by their adaptable framework, divided into three phases: 

initialisation, implementation, and scalability. 

Methodology 

It incorporates the methodology of robotics 

automation GLCM and SH-SAM which find usage in better 

localization for metallic surface defects. The integration of 

GLCM and SH-SAM enhances robotic defect detection by 

combining spectral anomaly detection with texture 

analysis. SH-SAM detects pixel-level deviations for early 

defect identification, while GLCM ensures precise 

classification of surface irregularities. This reduces false 

positives, improves localization accuracy, and enhances 

reliability in real-time industrial inspections. Anomalies in 

the surface are discovered and categorized. For 

Hyperspectral picture anomaly localization, SH-SAM helps 

accurately locate faults at a pixel level by making proper 

utilization of spectral information. In order to find small 

metallic surface flaws that conventional approaches miss, 

the SH-SAM analyzes hyperspectral data to detect spectral 

anomalies. Defect localization is improved by its pixel-wise 

deviation analysis, which guarantees excellent accuracy in 

robotic inspections conducted in real time. GLCM, on the 

other hand, helps detect flaws in terms of surface 

imperfections, which might exist through surface 

roughness, thereby extracting the texture information 

that describes the surface. The method permits accurate 

fault localisation to make the robotic systems proficiently 

and precisely perform automatic inspection jobs. The 

strong real-world performance is ensured by both 

approaches. 

 
Figure 1. Architecture flow for enhanced metal surface defect 
localization in robotics automation. 

Figure 1 portrays a risk-free workflow initiated with 

information accumulation from IoT devices. The AI-driven 

security optimization uses reinforcement learning with a 

reward function balancing security, latency, and resource 

use. WGAN with gradient penalty ensures stable training 

and privacy. It’s implemented with TensorFlow/PyTorch, 

federated learning datasets, hyperparameter tuning, and 

TEEs for secure AI execution. Following preprocessing and 

feature extraction, generative adversarial systems (GANs) 

cultivate information to improve coaching. The GANs 

enhance data privacy in cloud-edge AI by generating 

synthetic data for secure training. They reduce data 

leakage and improve federated learning. Integration with 

TEEs strengthens security and efficiency. TEEs furnish 

protected calculating and design reliability. Cloud-based 

mostly DevOps facilitates deployment, whereas 

categorization tasks use edge and cloud fashions. Overall 

performance analysis guarantees privacy-protecting 

techniques have excessive accuracy, precision, recollect, 

and low latency. 
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SH-SAM (Supervised Hyperspectral Anomaly Detection) 

SH-SAM involves hyperspectral imaging spectral 

data for the detection of deviations in metal surfaces. As 

such, the method bases its identification of variances 

capable of indicating flaws on comparative analysis with a 

reference dataset where training has already been 

completed. The combination of hyperspectral imaging 

with SH-SAM enhances precision, reduces false positives, 

and enables early defect detection, improving the 

reliability and efficiency of robotic industrial inspections. 

It is supervised meaning that the model is trained to 

identify normal patterns and pathological spectral 

patterns via labelled data.SH-SAM uses labelled data to 

accurately detect defects by distinguishing normal and 

anomalous spectral patterns. This reduces false positives 

and improves defect localization in hyperspectral imaging. 

The major advantage of SH-SAM is that it can identify 

anomalies that would be missed by conventional methods 

because it is sensitive to small variations in the spectrum. 

The SH-SAM enables pixel-level fault localization by 

analysing spectral deviations in hyperspectral images. It 

uses Mahalanobis distance-based anomaly scoring to 

detect subtle material inconsistencies. This enhances fault 

detection accuracy, making it effective for robotic 

inspection in industrial applications. The Mahala Nobis 

distance in SH-SAM accounts for spectral correlations, 

improving anomaly detection accuracy. It reduces false 

positives and enhances defect localization by focusing on 

statistical significance. The mathematical formulation of 

SH-SAM is based on the Mahalanobis distance, which is 

used for anomaly detection. 

       1( )
T

D x x x            (1) 

where, x is the pixel's spectral vector, 𝜇 Is the mean 

spectral vector of the reference dataset, Σ Is the 

covariance matrix of the reference dataset, D(x) is the 

anomaly score, with larger values indicating higher 

deviation from the reference. 

Grey Level Co-Occurrence Matrix (GLCM) 

A statistical technique called GLCM examines the 

spatial relationship between pixels to determine an 

image's texture. Features like contrast, correlation, energy, 

and homogeneity are essential for detecting surface 

anomalies and are extracted with the aid of GLCM for 

surface defect localisation. The enhanced sensitivity of the 

SH-SAM to minor spectral variations allows for accurate 

anomaly detection by detecting minute deviations at the 

pixel level, outperforming conventional techniques. Based 

on our results (F1 score: 88.5%, RME: 9.3%), this method 

improves reliability by lowering false positives and 

increasing defect localization accuracy when combined 

with GLCM. GLCM provides information about surface 

roughness and irregularities by examining the co-

occurrence of pixel intensities in a particular spatial 

relationship, which is often characterised by direction and 

distance. Direction in GLCM defines spatial relationships 

between pixel intensities, capturing texture variations in 

different orientations. This enhances defect localization by 

ensuring robust and precise classification when integrated 

with SH-SAM for automated inspection. The. GLCM 

captures surface roughness and irregularities by analysing 

pixel intensity variations and spatial relationships. It 

extracts texture features like contrast and homogeneity, 

which help distinguish defects from normal surface 

patterns. This enhances defect identification by providing 

detailed structural insights. This is how the GLCM is 

computed. 

   
 

 


 



  
       


,

cos ,
( , , , ) , ,

sinx y

x d y
P i j d I x y i I

d j
 (2) 

where P (i, j, d, θ) is the probability of two pixels with 

values 𝑖 and 𝑗 being at a distance 𝑑 and angle θ, I (x, y) 

am the intensity of the pixel at the position (x, y). δ is the 

Kronecker delta function, indicating if the intensity 

conditions hold. The Kronecker delta function in GLCM 

helps count specific pixel intensity pairs by filtering only 

matching values. This improves texture feature extraction, 

enhancing defect localization when combined with SH-

SAM. 

Defect Localization Process 

SH-SAM and GLCM are included in the fault 

localisation process to improve accuracy. First, using 

spectral data, SH-SAM locates abnormal areas on the 

surface.  The SH-SAM identifies abnormal regions by 

detecting spectral deviations using Mahalanobis distance. 

This enables early, precise defect detection, reducing false 

positives and improving localization. The detected regions 

are then subjected to GLCM to evaluate the texture 

features and aid in the anomaly type classification. 

Because it allows for accurate defect location and 

classification, this dual analysis is appropriate for robotic 

automation tasks in industrial settings. The integration of 

SH-SAM and GLCM improves defect detection accuracy 

and reduces inspection time. The fusion approach 

achieves 92% accuracy and enhances automation 

efficiency. This method streamlines defect analysis, 

reducing downtime in manufacturing and robotics. By 

increasing the sensitivity of defect detection, the 

integrated approach helps the robot perform remedial 

activities more successfully. This study improves robotic 
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defect detection and localization by combining GLCM for 

texture analysis with SH-SAM for spectral anomaly 

detection. Combining the two methods in a weighted way 

increases accuracy, lowers false positives, and facilitates 

efficient remedial action. This method improves 

automation precision and dependability for real-time 

industrial applications. 

Mathematical Fusion of SH-SAM and GLCM 

A weighted fusion approach is applied to combine 

the results obtained from SH-SAM and GLCM. A robust 

model for defect detection is designed using the texture 

features of GLCM and anomaly scores of SH-SAM. The 

weighted fusion approach optimally combines SH-SAM’s 

spectral anomaly detection with GLCM’s texture analysis, 

improving defect localization accuracy. This reduces false 

positives and enhances reliability, making industrial 

quality control more efficient and precise. The expression 

for the fused score S is. 

   1 2( ) GLCMS w D x w f               (3) 

where, S is the final defect score, w1 and w2 are weights 

assigned to the SH-SAM and GLCM features, respectively, 

fGLCM Represents the feature vector obtained from GLCM, 

such as contrast or energy. The final defect score 

integrates spectral data from SH-SAM, which detects 

anomalies at the pixel level, and texture data from GLCM, 

which analyzes features like contrast and homogeneity. 

This combination ensures more accurate and robust 

defect localization by leveraging the strengths of both 

methods. The proposed fusion technique ensures the 

contribution of both spectral and texture information 

towards defect localization. and hence enhances the 

accuracy as well as robustness of the system in metal 

surface defects. The algorithm integrates spectral 

anomalies from SH-SAM and textural features from GLCM 

using a weighted fusion approach. SH-SAM detects 

defects through spectral variations, while GLCM enhances 

classification by analyzing texture. The fusion optimally 

balances both methods, improving accuracy, robustness, 

and defecting localization. 

Algorithm 1 Enhanced Metal Surface Defect Localization using SH-SAM 

and GLCM in Robotics Automation 

 

Algorithm 1 uses GLCM and SH-SAM for the 

localization of defects on the metal surface. GLCM is used 

for analysing the textural features and SH-SAM detects the 

spectrum anomalies. By using SH-SAM for initial anomaly 

detection, spectral deviations are identified early, 

minimizing false positives and lowering regions of interest, 

which enables GLCM to concentrate on these regions for 

in-depth texture analysis, hence boosting defect 

classification and localization efficiency. Thus, an accurate 

identification of the defects present in the surface of the 

industrial robotic systems is achieved through combining 

the outcomes of the two approaches, to formulate the 

score map of defects which are then used for classification 

purposes. To enable defect classification, the score map 

that is produced from the fused SH-SAM and GLCM results 

highlights regions that are more likely to have defects 

based on a combination of spectral and textural data. By 

enabling more precise and effective classification, this 

targeted visualization helps robotic systems detect and fix 

flaws more precisely. 

Performance metrics 

Performance measurements are very essential to 

measure the efficiency of fault localisation techniques. 

These measurements will show how good a technique is 

at fault location and classification. In robotic automation 

for metal surface inspection, the quality and efficiency of 

detection algorithms can be measured by common 

metrics like accuracy, precision, recall, F1 score, and root 

Algorithm 

Input: I (x, y), R (x, y), d, θ 

 Output: S (x, y), Defectclassification 

 For each pixel (x, y) in I: 
   Calculate D (x) using Mahalanobis distance: 
     D (x): sqrt (δ I (x, y) - μ) T * Σ^-1 * (I (x, y) - μ)) 

   // Check if an anomaly is detected 
    If D(x) > threshold 
        δ I (x, y) = 1 // Anomaly detected 

    Else δ I (x, y)  
   For each pixel (x, y) in I  
     Calculate P (i, j, d, θ) Using GLCM 

        P (i, j, d, θ) = Σ (x, y) δ (I (x, y) = i, I (x + d*cos(θ), y + d*sin(θ)) 

= j) 

        // Extract features (contrast, correlation, etc.) 

       TextureFeatures (x, y) = ExtraFeatures P (i, j, d, θ) 

   For each pixel (x, y) in I: 

    If Anomlymap (x, y) == 1: 

     S (x, y) = w1 * D(x) + w2 * TextureFeatures (x, y) // Fusion of results 

   Else:  
       S (x, y) = 0 // No defect detected 
    For each pixel (x, y) in S: 

      If S (x, y) > threshold: 

          Defectclassification (x, y) = “Defect” 

      Else: 

        Defectclassification (x, y) = “No Defect”  

    Return S (x, y), Defectclassification 

End 
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mean error (RME). 

Table 1 Performance Evaluation of Metal Surface Defect Localization 

Methods 

 

Table 1 describes several defect localization 

techniques; GLCM, SH-SAM, and combinations of such 

techniques, considering critical performance measures: 

Root Mean Error, Accuracy, Precision, Recall, and F1 score. 

The Accuracy reflects overall correctness, precision 

minimizes false positives, and recall ensures all defects are 

detected. The F1 score balances precision and recall, while 

RME measures localization accuracy, collectively ensuring 

robust fault detection in robotic automation. The 

proposed Combined method has the best possible result 

in Root Mean Error value (RME = 9.3%) as well as 

outperformed isolated techniques while considering 

Accuracy as 92% and Precision at 89%. This displays that 

how efficient SH-SAM as well as GLCM might be put 

together to develop more sophisticated flaws detection 

potential in robotic automation systems. The system 

integrates SH-SAM for early spectral anomaly detection 

and GLCM for precise texture-based defect classification, 

ensuring accurate real-time inspections. Additionally, an 

automated feedback loop enables timely flaw resolution, 

enhancing reliability and efficiency in robotic automation 

Result and Discussion 

With 92% accuracy, 89% precision, and F1 Score of 

88.5%, the outcome indicates that the Combined Method 

works the best on all parameters but keeps the lowest 

Root Mean Error of 9.3%. Accuracy and precision of SH-

SAM Only at 85% and GLCM Only at 88% are poor as 

compared to single approach-based methods. The most 

efficient method of robotic automation in metal surface 

inspection is the method called a combination technique, 

which combines SH-SAM with GLCM to increase the 

precision of fault localisation. 

The conclusions highlight the potential of 

combining pioneering technologies to build robust, 

distributed platforms that can deal with rising dangers and 

needs. The discussion centered on how technological 

synergy can improve performance and offer real-time, 

secure remedies for data-driven scenarios. The suggested 

multifaceted approach integrates AI for threat detection, 

GANs for privacy, TEEs for safe execution, MDCs for low-

latency processing, and DevOps for automated security, 

outperforming conventional security designs. Precision, 

recall, efficiency, and accuracy are all improved by this 

combination. It guarantees durable, scalable, and flexible 

cloud-edge security. 

Table 2. Performance Comparison of Defect Localization Methods in 
Robotics Automation 

 

In Table 2, there are Current research compares 

several defect localization strategies, including robotic 

process automation [26], smart package creation [27], and 

crack defect detection [5]. The recommended method, 

which combines GLCM and SH-SAM for metal surface 

defect localization, outperforms all others with the best 

accuracy (92%), and the lowest RME (9.3%). The 

difference between the actual and identified locations of 

defects is measured by the Root Mean Error (RME); lower 

values denote better localization accuracy. A precise 

defect detection system that reduces misclassification and 

enhances spatial accuracy is indicated by an RME of 9.3%. 

This decrease improves robotic automation reliability by 

guaranteeing precise defect mapping for in-the-moment 

industrial inspections. This illustrates how effectively 

texture and spectrum analysis combine to enhance the 

detection of robotic system flaws. Coming studies may 

explore incorporating quantum technology into the 

framework, enhancing scalability under dynamic 

conditions, and broadening the concept to various sectors 

including healthcare, smart cities, and industrial 

automation. 

Metric SH-SAM GLCM GLCM+SH-
SAM 
(separate) 

Proposed 
Method 

Accurac
y 

85% 88% 89% 92% 

Precisio
n 

82% 84% 86% 89% 

Recall 80% 85% 86% 88% 

F1-
Score 

81% 84% 86.2% 88.5% 

RME 12.5% 11.2% 10.5% 9.3% 

Metri
c 

Robotic 
Process 

Automat
ion 
(2023) 

Smart 
Packagin

g 
Develop
ment 

(2022) 

Smart 
Eutectic 

Gallium
–Indium 
(2023) 

Fluoresc
ent 

Magneti
c 
Particle 

Inspecti
on 
(2023) 

Propose
d 

Method 
SH-SAM 
+ GLCM 

for 
Metal 
Surface   

Accur
acy 

80% 75% 82% 83% 92% 

Efficie

ncy 

78% 74% 80% 81% 89% 

F1-
Score 

77% 72% 79% 80% 88% 

Recall 77.5% 73.5% 80.5% 81% 88.5% 

Precis

ion 

15.5 16.2% 14.8% 13.5% 9.3% 
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Figure 2 Graphical comparison of defective localization methods in 
robotics automation. 

Figure 2 Performance comparison of the defect 

localisation techniques of Robotic Process Automation 

[26], Smart Packaging [27], Smart Eutectic Gallium–

Indium [25], and Crack Defect Detection [5]. The proposed 

method, combining GLCM with SH-SAM, provides 

excellent performance in all criteria, achieving the lowest 

RME at 9.3% and the highest accuracy at 92%. The graph 

shows that the hybrid method outperforms existing 

robotic automation methods in industrial uses since it is 

able to successfully identify metal surface defects. 

Conclusion 

With comparison to existing techniques, it can be 

stated that the proposed strategy that integrates SH-SAM 

and GLCM on the metal surface defect location performs 

better. It clearly shows higher accuracy in defect 

recognition and classification than Robotic Process 

Automation [25], Smart Packaging [26] and Crack Defect 

Detection [4] with its highest accuracy at 92% and lowest 

RME of 9.3%. By combining GLCM for texture-based 

defect classification with SH-SAM for accurate spectral 

anomaly detection, a 92% accuracy rate is obtained. By 

reducing false positives, improving localization, and 

balancing spectral and textural features in the best 

possible way, this fusion ensures reliable defect 

identification in industrial applications. The combination 

of GLCM for texture analysis and SH-SAM for anomaly 

detection in the spectral mode can provide a complete 

solution towards better defect localisation. Therefore, it 

presents a perfect method for robotic automation in 

metal surface inspection applications. 
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